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Abstract
Constructing AI models that respond to text in-
structions is challenging, especially for sequential
decision-making tasks. This work introduces an
instruction-tuned Video Pretraining (VPT) model
for Minecraft™ called STEVE-1, demonstrating
that the unCLIP approach, utilized in DALL•E 2,
is also effective for creating instruction-following
sequential decision-making agents. STEVE-1 is
trained in two steps: adapting the pretrained VPT
model to follow commands in MineCLIP’s la-
tent space, then training a prior to predict latent
codes from text. This allows us to finetune VPT
through self-supervised behavioral cloning and
hindsight relabeling, bypassing the need for costly
human text annotations. By leveraging pretrained
models like VPT and MineCLIP and employing
best practices from text-conditioned image gen-
eration, STEVE-1 costs just $60 to train and
can follow a wide range of short-horizon open-
ended text and visual instructions in Minecraft.
STEVE-1 sets a new bar for open-ended instruc-
tion following in Minecraft with low-level con-
trols (mouse and keyboard) and raw pixel inputs,
far outperforming previous baselines. We provide
experimental evidence highlighting key factors
for downstream performance, including pretrain-
ing, classifier-free guidance, and data scaling. All
resources, including our model weights, training
scripts, and evaluation tools are made available
for further research.

1. Introduction
The ability to use text instructions to control and interact
with powerful AI models has made these models accessible
and customizable for the masses. Such models include
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ChatGPT (OpenAI, 2022), which can respond to messages
written in natural language and perform a wide array of
tasks, and Stable Diffusion (Rombach et al., 2022), which
turns natural language into an image. While those models
cost anywhere from hundreds of thousands to hundreds of
millions of dollars to train, there has been an equally exciting
trend whereby powerful open-source foundation models
like LLaMA (Touvron et al., 2023) can be finetuned with
surprisingly little compute and data to become instruction-
following (e.g., (Taori et al., 2023; Chiang et al., 2023)).

In this paper, we study whether such an approach could
be applicable to sequential decision-making domains. Un-
like in text and image domains, diverse data for sequential
decision-making is very expensive and often does not come
with a convenient “instruction” label like captions for im-
ages. We propose to instruction-tune pretrained generative
models of behavior, mirroring the advancements seen in re-
cent instruction-tuned LLMs like Alpaca (Taori et al., 2023).

In the past year, two foundation models for the popular open-
ended video game Minecraft™ were released: a foundation
model for behavior called VPT (Baker et al., 2022) and a
model aligning text and video clips called MineCLIP (Fan
et al., 2022). This has opened up an intriguing avenue to
explore fine-tuning for instruction-following in the sequen-
tial decision-making domain of Minecraft. VPT was trained
on 70k hours of Minecraft gameplay, so the agent already
has vast knowledge about the Minecraft environment. How-
ever, just as the massive potential of LLMs was unlocked by
aligning them to follow instructions, it is likely that the VPT
model has the potential for general, controllable behavior
if it is finetuned to follow instructions. In particular, our
paper demonstrates a method for fine-tuning VPT to follow
short-horizon text instructions with only $60 of compute
and around 2,000 instruction-labeled trajectory segments.

Our method draws inspiration from unCLIP (Ramesh et al.,
2022), the approach used to create the popular text-to-image
model DALL•E 2. In particular, we decompose the problem
of creating an instruction-following Minecraft agent into
two models: a VPT model finetuned to achieve visual goals
embedded in the MineCLIP latent space, and a prior model
that translates text instructions into MineCLIP visual em-
beddings. We finetune VPT using behavioral cloning with
self-supervised data generated with hindsight relabeling
(Andrychowicz et al., 2017), avoiding the use of expensive
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text-instruction labels in favor of visual MineCLIP embed-
dings. We apply unCLIP with classifier-free guidance (Ho
and Salimans, 2022) to create our agent called STEVE-1,
which sets a new bar for open-ended instruction following
in Minecraft with low-level controls (mouse and keyboard)
and raw pixel inputs, far outperforming the baseline set by
Baker et al. (2022).

Our main contributions are as follows:

• We create STEVE-1, a Minecraft agent that can follow
open-ended text and visual instructions with a high de-
gree of accuracy. We perform extensive evaluations of
our agent, showing that it can perform a wide range of
short-horizon tasks1 in Minecraft. For longer-horizon
tasks like crafting and building, we show that a basic
version of prompt chaining can dramatically improve
performance.

• We describe our method for creating STEVE-1 using
only $60 of compute, showing that unCLIP (Ramesh
et al., 2022) and classifier-free guidance translate well
to the sequential decision-making domain and are es-
sential for strong performance.

• We release model weights for STEVE-1 as well as
training scripts and evaluation code in order to foster
more research into instructable, open-ended sequential
decision-making agents.2

2. Related Work
Minecraft as a Test-bed for AI Minecraft has gained
popularity as a benchmark for AI research due to its com-
plex and dynamic environment, making it a rich test-bed for
reinforcement learning and other AI methods (e.g., (Johnson
et al., 2016; Guss et al., 2019; Fan et al., 2022; Hafner et al.,
2023; Nottingham et al., 2023; Wang et al., 2023; Malato
et al., 2022; Cai et al., 2023)). We leverage the MineRL
environment (Guss et al., 2019) to research the creation of
agents that can follow open-ended instructions in complex
visual environments using only low-level actions (mouse
and keyboard). We build STEVE-1 on top of two recent
foundation models. In order to align text and videos, we
use MineCLIP (Fan et al., 2022), a CLIP (Radford et al.,
2021) model trained on paired web videos of Minecraft
gameplay and associated captions. To train STEVE-1’s pol-
icy, we fine-tune VPT (Baker et al., 2022), a foundation
model of Minecraft behavior that is pretrained on 70k hours

1Short-horizon tasks require few steps: e.g., go to a tree and
chop it down, dig a hole. Long-horizon tasks take many steps: e.g.,
craft complex recipes from scratch, build a house.

2Model weights, training code, videos, and an interac-
tive demo script are hosted on our project webpage at
https://sites.google.com/view/steve-1.

of web videos of Minecraft along with estimated mouse and
keyboard actions. Several prior works (Volum et al., 2022;
Wang et al., 2023) have explored the use of LLMs in cre-
ating instructable Minecraft agents. These works typically
use LLMs to make high-level plans that are then executed
by lower-level RL (Nottingham et al., 2023; Wang et al.,
2023) or scripted (PrismarineJS and Others, 2023) policies.
Since STEVE-1 is a far more flexible low-level policy, the
combination of STEVE-1 with LLMs is a promising direc-
tion for future work. Fan et al. (2022) introduced an agent
trained using RL on 12 different tasks and conditioned on
MineCLIP-embedded text-prompts. However, this agent
failed to generalize beyond the original set of tasks.

Foundation Models for Sequential Decision-Making
Foundation models which are pretrained on vast amounts
of data and then finetuned for specific tasks have recently
shown great promise in a variety of domains including lan-
guage (Brown et al., 2020; Chowdhery et al., 2022; Touvron
et al., 2023), vision (Ramesh et al., 2022; Caron et al., 2021;
Radford et al., 2021), and robotics (Brohan et al., 2022;
Shridhar et al., 2022; Jiang et al., 2022; Nair et al., 2022;
Xiao et al., 2022). GATO (Reed et al., 2022) and RT-1
(Brohan et al., 2022) have demonstrated the potential of
training transformers to perform both simulated and real-
world robotic tasks. With the exception of Kumar et al.
(2023), which uses Q-learning, the vast majority of cases
(Lee et al., 2022; Brohan et al., 2022; Reed et al., 2022)
where deep learning has been scaled to large, multitask
offline-RL datasets have used supervised RL. Supervised
RL (e.g., (Paster et al., 2020; Ghosh et al., 2021; Chen et al.,
2021)) works by framing the sequential decision-making
problem as a prediction problem, where the model is trained
to predict the next action conditioned on some future out-
come. While these approaches are simple and scale well
with large amounts of compute and data, more work is
needed to understand the trade-offs between supervised RL
and Q-learning or policy gradient-based methods (Paster
et al., 2022a;b; Brandfonbrener et al., 2022; Strupl et al.,
2022). Recent works explore the use of hindsight relabeling
(Andrychowicz et al., 2017) using vision-language models
(Radford et al., 2021; Alayrac et al., 2022) to produce natural
language relabeling instructions. DIAL (Xiao et al., 2022)
finetunes CLIP (Radford et al., 2021) on human-labeled tra-
jectories, which is then used to select a hindsight instruction
from a candidate set. Sumers et al. (2023) uses Flamingo
(Alayrac et al., 2022) zero-shot for hindsight relabeling by
framing it as a visual-question answering (VQA) task. In
contrast, STEVE-1 relabels goals using future trajectory seg-
ment embeddings given by the MineCLIP (Fan et al., 2022)
visual embedding.

Text-Conditioned Generative Models There has been
a recent explosion of interest in text-to-X models, includ-
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Figure 1. Like unCLIP (Ramesh et al., 2022), our approach involves two models. First, we train the policy by finetuning VPT to achieve
goals given by pretrained MineCLIP (Fan et al., 2022) visual embeddings using our gameplay dataset. Second, for the prior model, we
train a CVAE (Sohn et al., 2015) to sample MineCLIP visual embeddings given a text prompt. The combination of these two models
enables our agent to follow text and visual instructions.

ing text-to-image (e.g., (Ramesh et al., 2022; Saharia et al.,
2022; Rombach et al., 2022)), text-to-3D (e.g., (Jun and
Nichol, 2023; Lin et al., 2023)), and even text-to-music
(e.g., (Agostinelli et al., 2023)). These models are typically
either autoregressive transformers modeling sequences of
discrete tokens (Vaswani et al., 2017; Brown et al., 2020)
or diffusion models (Ho et al., 2020). Most related to our
work is unCLIP, the method used for DALL•E 2 (Ramesh
et al., 2022). unCLIP works by training a generative dif-
fusion model to sample images from CLIP (Radford et al.,
2021) embeddings of those images. By combining this
model with a prior that translates text to visual CLIP em-
beddings, unCLIP can produce photorealistic images for
arbitrary text prompts. unCLIP and many other diffusion-
based approaches utilize a technique called classifier-free
guidance (Ho and Salimans, 2022), which lets the model
trade-off between mode-coverage and sample fidelity post-
training. We utilize the basic procedure of unCLIP and
classifier-free guidance for training STEVE-1.

3. Method
Inspired by the rapid recent progress in instruction-tuning
Large Language Models (LLMs), we choose to leverage
the recently released Video Pretraining (VPT) (Baker et al.,
2022) model as a starting point for our agent. Since VPT
was trained on 70k hours of Minecraft gameplay, the agent
already has vast knowledge about the Minecraft environ-
ment. However, just as the massive potential of LLMs
was unlocked by aligning them to follow instructions, it
is likely that the VPT model has the potential for general,
controllable behavior if it is finetuned to follow instructions.
In this work, we present a method for finetuning VPT to
follow natural, open-ended textual and visual instructions,

which opens the door for a wide range of uses for VPT in
Minecraft.

Our approach is inspired by unCLIP, the method behind the
recent text-to-image generation model, DALL•E 2 (Ramesh
et al., 2022). Our goal is to create a generative model
of behavior in Minecraft conditioned on text instructions
y. To do so, we utilize a dataset of Minecraft trajec-
tory segments, some of which contain instruction labels
y: [(τ1, y1), (τ2, y2), . . . , (τn, ∅)] where τ is a trajectory of
observations and actions. We also employ a pretrained CLIP
model called MineCLIP (Fan et al., 2022), which generates
aligned latent variables zτt:t+16

, zy , where zτt:t+16
is an em-

bedding of any 16 consecutive timesteps from the trajectory.
MineCLIP is trained using a contrastive objective on pairs
of Minecraft videos and transcripts from the web. For sim-
plicity of notation, we refer to the MineCLIP embedding of
the last 16 timesteps of a trajectory segment as zτgoal . Like
unCLIP (Ramesh et al., 2022), we utilize a hierarchical
model consisting of a prior and a policy:

• A prior p(zτgoal |y) that produces a latent variable zτgoal

conditioned on a text instruction y.

• A policy p(τ |zτgoal) that produces a trajectory condi-
tioned on a latent variable zτgoal .

These two models can then be combined to produce a gen-
erative model of behaviors conditioned on text instructions:

p(τ |y) = p(τ, zτgoal |y) = p(zτgoal |y)p(τ |zτgoal) (3.1)

3.1. Policy

To learn our policy, we finetune VPT, a foundation model of
Minecraft behaviors pθ(τ) trained on 70k hours of Minecraft
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Figure 2. To create goal-conditioned data for finetuning, we randomly select timesteps from episodes and use hindsight relabeling to set
the intermediate goals for the trajectory segments to those visual MineCLIP embeddings. This self-supervised data teaches the agent
which actions lead to which states.

gameplay videos. Specifically, VPT consists of a ResNet
(He et al., 2016) that processes frames of dimension 128×
128 × 3, and a Transformer-XL (Dai et al., 2019) which
processes the frame representations and autoregressively
predicts the next action using the joint hierarchical action
space described in Baker et al. (2022). In order to modify
the architecture to condition on goal information, we add
an affine transformation of zτgoal to the output of the ResNet
before passing it to the transformer:

Process Frames: ResNetθ(ot) → xt

[+ Goal Embedding]: xt → xt +Wθzτgoal + bθ

Predict Actions: TransXLθ(xt, . . . , xt+T ) → at+T

In order to finetune VPT to condition on goals, we fine-
tune the model using a method inspired by supervised RL
approaches like Decision Transformer (Chen et al., 2021),
GLAMOR (Paster et al., 2020), and GCSL (Ghosh et al.,
2021). We use a modification of hindsight relabeling which
we call packed hindsight relabeling (see Figure 2) to gen-
erate a new dataset of trajectories with goals pulled from fu-
ture states that periodically switch. Specifically, our method
to generate this dataset consists of two steps:

1. Given a trajectory τ with T timesteps, randomly gen-
erate indices to select goals from: i1, i2, . . . , in. These
indices are chosen by starting at the first timestep and
repeatedly sampling a new timestep by adding a ran-
dom value to the previous timestep. This ensures that
the data reflects that some goals may take longer to
achieve than others.

2. For each chosen goal at timestep ij , set the goals for
timesteps ij−1 +1, . . . , ij to be the goal at timestep ij ,
denoted zτij .

Our final dataset Drelabeled consists of observation sequences
(o1, . . . , oT ), action sequences (a1, . . . , aT ), and packed
hindsight relabeled goals (z1, . . . , zT ). We then finetune
VPT on this dataset using a supervised loss to predict eacg
action autoregressively using a causal attention mask:

Lpolicy(θ) = EDrelabeled [− log pθ(at|o1...t, z1...t)] (3.2)

3.2. Prior

In order to condition not only on embeddings of visual goals
but on latent goals, we need the prior, a model that produces
a latent variable zτgoal conditioned on a text instruction y.
Our model is a simple conditional variational autoencoder
(CVAE) (Sohn et al., 2015; Kingma and Welling, 2014)
with a Gaussian prior and a Gaussian posterior. Rather than
learn to condition directly on text, we choose to condition
on frozen text representations from MineCLIP zy . Both the
encoder and decoder of our CVAE are parameterized as two-
layer MLPs with 512 hidden units and layer normalization
(Ba et al., 2016). We train the model on our dataset, for
which we have text labels Dlabels using the following loss:

Lprior(ϕ) =E(zτgoal ,zy)∼Dlabels

[
KL(qϕ(zτgoal |zy)∥p(zτgoal))

−Ec∼qϕ(zτgoal |zy)
[
log pϕ(zτgoal |c, zy)

]]
3.3. Datasets

To train our policy, we gather a gameplay dataset with
54M frames (≈ 1 month at 20FPS) of Minecraft gameplay
along with associated actions from two sources: contractor
gameplay and VPT-generated gameplay. To train our prior,
we use a dataset of text-video pairs gathered by humans
and augmented using the OpenAI API gpt-3.5-turbo
model (OpenAI, 2022) and MineCLIP. See Appendix C for
more detailed information about our datasets.

OpenAI Contractor Dataset We use 39M frames
sourced from the contractor dataset which VPT (Baker et al.,
2022) used to train its inverse dynamics model and finetune
its policy. The dataset was gathered by hiring human con-
tractors to play Minecraft and complete tasks such as house
building or obtaining a diamond pickaxe. During gameplay,
keypresses and mouse movements are recorded. We use
the same preprocessing as VPT, including filtering out null
actions.

VPT-Generated Dataset We generate an additional
dataset of 15M frames by generating random trajectories us-
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ing the various pretrained VPT agents. The diversity of this
dataset is improved by randomly switching between models
during trajectories (Paster et al., 2022b), randomly resetting
the agent’s memory, and randomly turning the agent to face
a new direction.

Text-Video Pair Dataset To train our prior model, we
also manually gather a dataset of 2,000 text instructions
paired with 16-frame videos sampled from our gameplay
dataset. We augment this dataset by using the alignment be-
tween text and video embeddings from MineCLIP. For each
text instruction, we find the top k most similar gameplay
segments in our dataset and use the corresponding 16-frame
video as additional training data. For augmentation, we also
add 8,000 text-instructions generated by the OpenAI API
gpt-3.5-turbo model (OpenAI, 2022), in addition to
our 2,000 hand-labeled instructions.

3.4. Inference

At inference time, we use the prior to sample a latent goal
zτgoal from the text instruction y. We then use the policy
to autoregressively sample actions at conditioned on the
observation history o1...t and the latent goal zτgoal . Similar
to the observation in Appendix I of Baker et al. (2022),
even with conditioning the policy often fails to follow its
instruction and simply acts according to its prior behavior.
To mitigate this, we borrow another trick used in image
generation models: classifier-free guidance. Specifically,
during inference we simultaneously compute logits for the
policy conditioned on the goal f(ot, . . . , ot+1, zτgoal) and for
the unconditional policy f(ot, . . . , ot+1). We then compute
a combination of the two logits using a λ parameter to trade-
off between the two:

logits = (1+λ) fθ(ot, . . . , ot+1, zτgoal)︸ ︷︷ ︸
conditional logits

−λ fθ(ot, . . . , ot+1)︸ ︷︷ ︸
unconditional logits

By setting a higher value of λ, we can encourage the pol-
icy to follow actions that are more likely when conditioned
on the goal and, as demonstrated in Section 4.5, this sig-
nificantly improves performance. Also, in order to train
the policy to generate these unconditional logits, we occa-
sionally dropout the goal embedding zτgoal from the policy’s
input (with probability 0.1). This lets us generate both the
conditional and unconditional logits using the same model
with batch processing at inference time.

3.5. Evaluation

Evaluating the performance of our agent is a challenging
task due to the wide variety of instructions that are possi-
ble and the difficulty of evaluating whether the agent has
successfully achieved its task. We compute programmatic
metrics by monitoring the agent’s travel distance and early-

game item collection (log, seed, and dirt). We also compute
automatic MineCLIP metrics to evaluate the agent’s capabil-
ity level by recording the minimum cosine distance between
the (text or visual) goal embedding and the MineCLIP vi-
sual embedding at any timestep during an episode. See
Appendix D for more details about our evaluation metrics.

4. Results
In our experiments, we aim to answer the following:

1. How well does STEVE-1 perform at achieving both
text and visual goals in Minecraft?

2. How does our method scale with more data?

3. What choices are important for the performance of our
method?

4.1. Training Setup

We base our implementation off of the official VPT code-
base3. The main STEVE-1 is trained using Pytorch (Paszke
et al., 2019) distributed data parallel on four A40 GPUs
for 160M frames, or just under three epochs of our game-
play dataset. Hyperparameters are selected to match those
in Baker et al. (2022) with the exception of learning rate,
which we set to 4e-5. Our models are optimized using
AdamW (Loshchilov and Hutter, 2019). See Table 3 for a
full list of hyperparameters.

4.2. Performance on Textual and Visual Goals

Due to the hierarchical nature of our model, we can evaluate
the performance of our agent at achieving either text or
visual goals simply by choosing whether to use the prior
to condition on text or bypass the prior and condition on
a MineCLIP video embedding directly. We first tested our
model on a set of 11 tasks that are achievable within the first
2.5 minutes of gameplay and which do not require multiple
steps to complete (e.g., chop a tree or dig a hole, but not
build a house). A complete list of the tasks and prompts we
used for evaluation can be found in Table 4 in the appendix.
To select visual goals for testing each of the evaluation tasks,
we implemented a tool that searches through 10% of our
gameplay dataset by finding the closest 16-frame videos to
a given text prompt. We then manually selected a 16-frame
video that clearly demonstrates the task being completed
and use the corresponding MineCLIP video embedding as
the goal embedding for that task. Screenshots of these visual
goals can be found in Figure 14 in the appendix.

In Figure 3, we compare the performance of our text and
visual-conditioned agents with the unconditional VPT agent
across our programmatic tasks. We find that when given

3https://github.com/openai/Video-Pre-Training
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Figure 3. Left: In our programmatic evaluations, STEVE-1 performed far better than the unconditional VPT agent early-game-2x
when prompted appropriately. On some tasks, visual outperforms text-based prompting, creating a gap that can likely be bridged through
better prompt engineering. Right: Across our 11 MineCLIP evaluation tasks, STEVE-1 achieves the shortest distance between the
episode and the MineCLIP goal embedding when prompted appropriately except for in two cases, where it mixes up digging and dirt and
swimming and going underwater. This shows the strong general performance of STEVE-1 across a wide variety of short-horizon tasks.
See Figure 14 for sample frames from each of the 11 visual goals.

the relevant text instruction, STEVE-1 collects 75x more
dirt, 4.9x more wood, 22x more seeds, and travels 4.3x
further than the unconditional agent. This also represents
a significant improvement over the reported performance
of text-conditioning in Appendix I of Baker et al. (2022),
which collects several times fewer resources despite having
twice as long of an episode to do so. We also run an au-
tomatic evaluation using MineCLIP embedding distances
by measuring the minimum distance of a goal embedding
to any frame in the episode. As shown in Figure 12, the
distance between the goal and the episode is significantly
lower when the agent is conditioned on the corresponding
visual goal than otherwise. Full results for STEVE-1 with
both text and visual goals can be found in Appendix F.

In addition to our evaluations of STEVE-1, we also recorded
several sample interactive sessions we had with the agent
(controlling it in real-time by giving it written text instruc-
tions or specific visual goals). These sessions demonstrate
STEVE-1’s ability to responsively follow instructions in
real-time in a variety of situations. We believe that such use-
cases, where humans give an agent natural instructions that
it can follow to complete tasks, will become increasingly im-
portant and have practical uses in the creation of instructable
assistants and virtual-world characters. These videos, as
well as videos of our agent performing our evaluation tasks,
can be found at https://sites.google.com/view/steve-1.

4.3. Prompt Chaining

We also experiment with longer horizon tasks that require
multiple steps, such as crafting and building. We explore
two different prompting methods: directly prompting with
the target goal, and a simple form of prompt chaining
(Chase, 2022; Wei et al., 2022b; Dohan et al., 2022) where
the task is decomposed into several subtasks and the prompts
are given sequentially for a fixed number of steps. We ex-
plore prompt chaining with visual goals for two tasks: 1)
building a tower and 2) making wooden planks. When us-
ing prompt chaining, we first prompt STEVE-1 to gather
dirt before building a tower, and to gather wooden logs be-
fore crafting wooden planks. Figure 4 shows that directly
prompting STEVE-1 with the final tasks results in near-zero
success rates. However, prompt chaining allows STEVE-1
to build a tower 50% of the time and craft wooden planks
70% of the time. For the tower building task, STEVE-1
immediately starts collecting dirt until the prompt switches,
at which point its average height starts increasing rapidly
and its dirt decreases as it builds a tower. Similarly, for
the crafting wooden planks task, STEVE-1 immediately
starts collecting a large amount of wooden logs until the
prompt switches and it rapidly converts these wooden logs
into wooden planks (causing the amount of wooden logs
in its inventory to immediately decrease and the number
of wooden planks to increase as it crafts more). Figure 4
visualizes the average item counts and agent height for the
prompt chaining episodes. See Figure 17 and Figure 18 in
the appendix for visualizations of specific prompt chaining
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Figure 4. Top left: By sequentially chaining visual prompts like “get dirt” and “build a tower”, STEVE-1 successfully gathers dirt and
then uses this dirt to build a tower. The prompts switch at the dotted vertical line. Bottom left: The success rates of the chained prompts
improve steadily as we train STEVE-1 on more data. Right: The performance of STEVE-1 in different tasks scales in different ways when
conditioning on relevant visual prompt for the metric (e.g. break wood for the “Wooden Logs Collected” metric) versus other irrelevant
visual prompts. For instance, in the wood-collection and dirt-collection tasks, performance starts increasing after training on 60M frames
of gameplay.

episodes.

4.4. Scaling

Recent works in language modeling have found that scal-
ing up pretraining FLOPs, by training on more data or by
training a model with more parameters, can improve perfor-
mance on downstream tasks (Kaplan et al., 2020; Suzgun
et al., 2022; Wei et al., 2022a). In certain cases when mea-
suring performance with metrics such as exact-match (Scha-
effer et al., 2023), performance improvement may appear
to be “emergent” (Wei et al., 2022a), appearing suddenly
as the model is trained with more compute. Here, we aim
to gain a basic understanding of how the performance of
STEVE-1 on various tasks scales by training with more data
(learning rate schedule is chosen appropriately).

To assess performance gain, we first isolated the perfor-
mance of the policy from the prior, measuring performance
of the agent through training on programmatic tasks (travel
distance, seeds, logs, dirt) with visual goals. Due to com-
pute constraints, we chose to use the 2x VPT model, which
has 248M parameters. We found that both seed collection
and travel distance did not improve significantly past 20M
frames. From inspecting gameplay, we suspect that travel
distance is a relatively easy task since it is close to VPT’s
default behavior of running around and exploring. For seed
collection, performance remains suboptimal, suggesting that
further scaling may be beneficial. This hypothesis is sup-
ported by the observation that performance on log and dirt
collection remained roughly level until 60M frames when it

began to rapidly improve. Figure 4 shows the scaling curves
for STEVE-1 on each programmatic task when conditioning
on relevant vs. irrelevant visual prompts for that task.

We also evaluated the scaling properties of STEVE-1 for our
multi-step tasks with and without prompt chaining. Without
prompt chaining, the tasks remain challenging for STEVE-
1 throughout training. However, we note that after 60M
frames, STEVE-1 learns to gather wooden logs and build a
small tower when told to build a tower. This is likely because
our visual prompt for tower building shows a video of a
tower being built out of wooden logs. With prompt chaining,
the performance of STEVE-1 steadily increases with more
data. We conjecture that this is because the success of a
chained prompt requires the success of each element in the
chain. Since different abilities emerge at different scales,
one would expect chained prompts to steadily get more
reliable as these subgoals become more reliably completed.
In the case of building wooden planks, we note that crafting
is one such task that gets significantly more reliable as the
agent is trained on more data. Figure 4 shows the scaling
curves for STEVE-1 on the prompt chaining tasks.

In summary, we see evidence of tasks that do not require
much data for STEVE-1 to learn, tasks that steadily get
more reliable as the agent is trained longer, and tasks where
capability suddenly spikes after the agent reaches some
threshold. Put together, this suggests that further scaling
would likely significantly improve the agent, although we
leave the task of predicting exactly how much performance
there is to gain to future studies.
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Figure 5. Left: We trained STEVE-1 on 100M frames starting from four different pretrained weights: random initialization (scratch),
foundation-2x (fd), bc-early-game-2x (bc), and rl-from-foundation-2x (rl). The rl-from-foundation-2x
agent is generally the most performant after fine-tuning. Using pretrained weights performs better than training from scratch, especially
for more complicated tasks like collecting wood. Right: By using classifier-free guidance (Ho and Salimans, 2022), STEVE-1 collects
5.8x more dirt and 9x more wood.

4.5. What Matters for Downstream Performance?

In this section, we show that pretraining and classifier-free
guidance both have a siginificant impact on downstream
performance. See Appendix B for additional ablations on
design choices for our method, including prompt engineer-
ing, the use of classifier-free guidance during training, text
augmentation strategies, different VAE variants, and varying
chunk sizes during finetuning.

Pretraining Baker et al. (2022) finds that by pretrain-
ing a behavioral prior with imitation learning on internet-
scale datasets for Minecraft, the learned policy can be ef-
fectively finetuned to accomplish tasks that are impossi-
ble without pretraining. In this section, we demonstrate
that pretraining is also massively beneficial for instruction-
tuning in Minecraft. We hypothesize that due to the strong
performance of STEVE-1 and the relatively small amount
of compute (≈ 1% additional compute) used for instruc-
tion finetuning, most of the capabilities of our agent come
from the pretraining rather than the finetuning. To test
this hypothesis, we finetune several varients of STEVE-
1 from various pretrained weights: foundation-2x,
bc-early-game-2x, rl-from-foundation-2x,
and with randomly initialized weights. In this experiment,
each model was finetuned on 100M frames.

Figure 5 shows the performance of these models on our
programmatic tasks with visual goals. Note that while an
agent trained on our dataset from scratch can accomplish
basic tasks like dirt collection fairly well, it is unable to find
and chop down trees, in contrast to the pretrained agents.
This demonstrates that the abilities present in the agent
due to pretraining are successfully transferred to the fine-
tuned agent. Out of all the pretrained weights we tried, we
noticed that rl-from-foundation-2x performed the
best, having qualitatively better performance at tasks like
crafting and chopping down trees. Indeed, Figure 5 shows
that this model has strong performance, likely due to the

massive amount of compute it was trained with during its
RL training (Baker et al., 2022).

Classifier-Free Guidance Baker et al. (2022) observed
that when conditioning the agent on text, it tended to ig-
nore its instruction and instead perform the prior behavior
learned during pretraining. As discussed in section 3.4,
classifier-free guidance gives a knob for trading off between
goal-conditioned and prior behaviors. Figure 5 shows the
effect of this parameter λ on the log and dirt collection
tasks. The performance of the agent reaches its maximum
around λ = 5.0 to λ = 7.0, after which it starts to drop off.
These results demonstrate the importance of classifier-free
guidance, which improves the performance of STEVE-1 by
orders of magnitude.

5. Conclusion
We demonstrate the promise of our approach of applying
unCLIP (Ramesh et al., 2022) and classifier-free guidance
(Ho and Salimans, 2022) to create STEVE-1, a powerful
instructable agent that is able to achieve a wide range of
short-horizon tasks in Minecraft. STEVE-1 can be prompted
to follow text or visual goals, achieving strong instruction-
following performance in Minecraft with only $60 of com-
pute and around 2,000 instruction-labeled trajectory seg-
ments. We show that an initial version of prompt chaining is
a promising approach for improving performance on longer
horizon tasks that require multiple steps of reasoning, and
more can be done in future work to improve performance.

Due to the generality of our approach, which operates on
raw pixels and produces low-level actions (mouse and key-
board), we hope that STEVE-1 can spark future work in cre-
ating instructable agents in other domains and environments.
Future work should include addressing the limitations of
STEVE-1 by improving its performance in longer-horizon
tasks, perhaps through the use of LLMs.
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A. Broader Impact
With the increasing capability level of artificial intelligence comes many potential benefits and also risks. On the positive
side, we anticipate that the techniques that used to create STEVE-1 could be applied to the creation of helpful agents in other
sequential decision making domains, including robotics, video games, and the web. Our demonstration of such a low cost
approach to creating a powerful, instruction-following model also has the potential to improve the democratization of AI.
However, on the negative side, agents pretrained on large internet datasets reflect the biases of the internet and, as suggested
by our experiments, these pretraining biases can potentially remain after instruction-tuning. If not addressed carefully, this
could lead to devastating consequences for society. We hope that while the stakes are low, works such as ours can improve
access to safety research on instruction-following models in sequential decision-making domains.

B. Additional Ablations
In this section, we describe additional ablations on design choices for our method, including prompt engineering, the use of
classifier-free guidance during training, text augmentation strategies, different VAE variants, and varying chunk sizes during
finetuning. We use programmatic evaluation metrics to compare the performance of the various ablations.

B.1. Prompt Engineering

Prompt engineering as a discipline has rapidly emerged over the last year due to the observation that the quality of the
output of text-to-X models can dramatically change depending on the prompt (Zhou et al., 2023). For example, Table 1
shows how a prompt for Stable Diffusion (Rombach et al., 2022) might be written. By listing out the various attributes of
the image such as visual medium, style, and the phrase “trending on ArtStation”, the user is able to get a higher quality
image (Gustavosta, 2023; Liu and Chilton, 2022). In this section, we explore how this same style of prompt engineering can
improve the performance of STEVE-1. Figure 6 shows how a simple prompt of “get dirt” might be changed in order to more
accurately specify the type of behavior that is desired. Just like in image generation models, the performance of STEVE-1
significantly improves by modifying the prompt in this fashion. By changing to more complicated prompts, STEVE-1 is able
to collect 1.56x more wood, 2x more dirt, and 3.3x more seeds.

Prompt Dirt Collected

“break a flower” 0.7 (-0.2, 1.6)
“collect seeds” 2.7 (0.9, 4.5)
“dig as far as possible” 3.9 (2.8, 5.0)
“get dirt” 9.2 (5.7, 12.7)
“get dirt, dig hole, dig dirt,
gather a ton of dirt, collect dirt” 26.7 (19.9, 33.5)

Figure 6. Similar to in image generation, switching to a longer, more specific prompt dramatically improves the performance of STEVE-1.

Model Simple Prompt Complex Prompt

Stable Diffusion (Rombach et al., 2022) steampunk market interior steampunk market interior, colorful, 3D
scene, Greg Rutkowski, Zabrocki, Kar-
lkka, Jayison Devadas, trending on Art-
Station, 8K, ultra-wide-angle, zenith
view, pincushion lens effect (Gustavosta,
2023)

STEVE-1 collect seeds break tall grass, break grass, collect
seeds, punch the ground, run around in
circles getting seeds from bushes

Table 1. Example of evolving simple prompts into more complex ones for various models.
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B.2. Classifier-Free Guidance During Training

We examine the importance of using classifier-free guidance during training by finetuning a model with no guidance which
does not drop out the goal embedding zτgoal

from the policy’s input (i.e., puncond = 0.0) and comparing it to the version
which uses guidance (puncond = 0.1). The chunk size is set to the range 15 to 50 and we train each policy for 100M frames.
In Figure 7, we compare the performance of using visual goals (MineCLIP video embedding) on the no guidance model
using conditional scale λ = 0 and the guidance model using conditional scales λ = 0 and λ = 3. We observe that while
the no guidance model slightly outperforms the guidance model at λ = 0 across a few metrics, the agent with guidance
outperforms the no guidance agent by a factor of 2 to 3 times for the inventory collection tasks when we increase the
conditional scale to λ = 3 (which we cannot do for the no guidance model). For the travel distance metric, both of the
guidance versions perform similarly to the no guidance version.
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Figure 7. Ablation on Guidance. In the “no guidance” variant, we set puncond = 0, meaning that we do not drop any zτgoal from the
policy’s input during training. The “guidance” variants set puncond = 0.1, dropping 10% of the time during training. Whereas the “no
guidance” model is only compatible with λ = 0 at inference, the “guidance” model can use λ > 0, allowing for better performance.

B.3. Text Augmentation

During finetuning, instead of using only self-supervision with future MineCLIP video embedding as the goal, we considered
using the text embeddings from the 2,000 human labeled trajectory segments as goal embeddings, either solely or in addition
to the self-supervised video embeddings. In order to more fairly compare with the CVAE prior approach, we augment
the human-labeled data with additional text-gameplay pairs generated as described in Appendix E.2. We implement this
experiment by replacing the visual embeddings used for relabeling in Algorithm 1 with text embeddings, when available,
with a 90% probability. To experiment with not using visual embeddings at all, we can replace the visual embeddings with
zeros in the same way. In Figure 8, we observe that using only the visual embeddings during training, in combination with
the CVAE, can outperform using MineCLIP text embeddings directly in the other two baselines. In this experiment, the
chunk size is set to the range 15 to 50 and we train each policy for 100M frames.

B.4. VAE Variants

We study the dataset used to train the CVAE prior model. In Figure 9, we observe that augmentation helps in some
programmatic tasks, including the dirt and seed collection tasks, but slightly hurts the wooden log collection and travel
distance metrics. In this experiment, we use the same policy with each CVAE variant and we tune the conditional scale λ for
each variant. The chunk size is set to the range 15 to 200 and we train the policy for 100M frames.

B.5. Chunk Size

During finetuning, we compare different goal chunk sizes by varying the max_btwn_goals=[100,200,300,400],
while keeping the min_btwn_goals=15. See Algorithm 1 for more details. A larger max_btwn_goals introduces
more noise, with actions that led to achieving the further away goal being less correlated to the actions present in that goal
chunk. In Figure 10, we observe that the best max_btwn_goals chunk size is around 200, and increasing the chunk size
beyond that causes a drop in performance. We train each policy for 160M frames and tune the conditional scale for each.
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Figure 8. Ablation on Text Augmentation. In the “text (raw text)” ablation, we train the model using only the text labels from human
labelled trajectory segments, and directly use the MineCLIP text embedding of the text label as the goal embedding during training
and at inference. For the “text + visual (raw text)” ablation, we use both the visual embedding in self-supervised manner and the text
embedding from the human labelled trajectory segments during training and use the MineCLIP text embedding during inference. Even
with augmentation, the dataset only contained around 2% text embeddings. The “visual (text VAE)” version is as reported in the main
method, using the CVAE to convert MineCLIP text embedding to visual embedding during inference.
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Figure 9. Ablation on VAE Training Data. “Human” baseline uses only the 2,000 human-labelled trajectory segments (text-video pairs),
as training example for the CVAE prior model. “Human + Aug” baseline adds additional pairs of text-video examples as described in
Section 3.3.

C. Dataset Details
C.1. Gameplay Dataset

Our gameplay dataset consists of two types of episodes: 7,854 episodes (38.94M frames) of a contractor dataset made
available from Baker et al. (2022) and 2,267 episodes (14.96M frames) of gameplay generated by running various pretrained
VPT agents.

OpenAI Contractor Dataset The majority of our data comes from the contractor data used to train VPT (Baker et al.,
2022). OpenAI released five subsets of contractor data: 6.x, 7.x, 8.x, 9.x, and 10.x. We use an equal mix of 8.x, 9.x, and
10.x, which correspond to “house building from scratch”, “house building from random starting materials”, and “obtain
diamond pickaxe”. Contractors were given anywhere from 10 to 20 minutes to accomplish these goals to the best of their
abilities while their screen, mouse, and keyboard were recorded.

VPT-Generated Dataset We generated additional data by generating episodes using various pretrained VPT agents. In
order to increase the diversity of data as well as to get data of the agent switching tasks randomly throughout the middle
of episodes, we added random switching between the different pretrained agents during episodes. Specifically, at the
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Figure 10. Ablation on Segment Chunk Size. We vary the max_btwn_goals parameter in Algorithm 1. The performance is roughly
the best at around 200, beginning to decline with greater values.

beginning of an episode we randomly sample two VPT agents from (foundation_model_2x, bc_early_game_2x,
bc_house_3x, rl_from_foundation_2x, rl_from_house_2x) and switch between them at each timestep with
a probability of 1/1000. Since the RL agents all act quite similarly, we avoid sampling two RL agents at once. Additionally,
with a probability of 1/750 each timestep, we cause the agent to spin a random number of degrees. This adds more data
where the agent spontaneously changes tasks, increasing downstream steerability.

C.2. Instruction Dataset

We gathered a small dataset of 2,000 human-labelled trajectory segments (text-video pairs) by manually labeling gameplay
from our datasets. We used a simple web app that presented a video of 16 frames to the user from a randomly sampled
episode. This only corresponds to 32,000 frames of labeled data, which corresponds to labeling 0.06% of the full dataset, or
27 minutes of labeled data. However, as discussed in section E.2, combining this with automatically labeled data using
gpt-3.5-turbo and MineCLIP results in a strong prior model.

Algorithm 1 Sampling Episode Segments with Packed Hindsight Relabeling
Function sample_episode_segment(T, min_btwn_goals, max_btwn_goals)

segment = sampleSegment(episode, T)
curr_timestep = segment.start
goal_switching_indices = []
while curr_timestep < segment.end do

curr_timestep += uniform(min_btwn_goals, max_btwn_goals)
goal_switching_indices.append(curr_timestep)

relabeled_goal_embeds = []
for n in range(1, len(goal_switching_indices)) do

relabeled_goal_embeds[in−1:in] = segment.goal_embeddings[in]
return segment.obs, segment.actions, relabeled_goal_embeds

D. Evaluation Details
Evaluating the performance of our agent is a challenging task due to the wide variety of instructions that are possible and
the difficulty of evaluating whether the agent has successfully achieved its task. We use a combination of programmatic
evaluation metrics and automatic MineCLIP evaluation metrics to get a sense of the agent’s capability level.

Programmatic Evaluation We compute programmatic evaluation metrics by monitoring the MineRL (Guss et al.,
2019) environment state throughout each evaluation episode. As done in VPT (Baker et al., 2022), we compute multiple
programmatic metrics including travel distance and early-game item collection. The travel distance is the maximum
displacement of the agent along on the horizontal (X-Z) plane, measured from the initial spawn point. For early-game
inventory counts, we store the maximum number of log, seed, and dirt items seen in the agent’s inventory during the episode.
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MineCLIP Evaluation For any trajectory τ we can use the text-visual alignment of MineCLIP embeddings (Fan et al.,
2022) to roughly evaluate whether a segment of 16 frames corresponds to a given task. We explore the use of alignment in
the MineCLIP latent space between trajectories and either text or visual goals to evaluate our agent over a wider variety of
tasks where programmatic evaluation isn’t practical. To determine the degree to which a task has been completed at all
during an episode, we record the minimum cosine distance between the (text or visual) goal embeddings at any timestep
during an episode.

E. Training Details
E.1. Policy Training

STEVE-1 was trained using distributed data parallel in PyTorch (Paszke et al., 2019). During training, segments of 640
timesteps were sampled from the dataset. Due to memory constraints, these segments were further broken up into chunks
of 64, which are processed sequentially. Since VPT uses a Transformer-XL (Dai et al., 2019), this sequential processing
lets the policy attend to previous batches up to the limit of its context length. We optimized the weights using AdamW
(Loshchilov and Hutter, 2019) with a maximum learning rate of 4e-5 and a linear warmup for the first 10M frames followed
by a cosine learning rate decay schedule that decays to 10% of the original learning rate. See Table 3 for an exhaustive list
of hyperparameters used during training.

During training, we sample data using packed hindsight relabeling (Figure 2). This involves sampling a segment of
an episode, randomly selecting some timesteps at which to change goals, and then filling in the corresponding goal
embeddings for the entire episode with the embeddings from the corresponding goal segments. See Algorithm 1 for a
detailed explanantion of packed hindsight relabelling.

Hyperparameter Name Value

architecture MLP

hidden_dim 512

latent_dim 512

hidden_layers 2

batch_size 256

learning_rate 1e-4

β 0.001

n_epochs 50

n_search_episodes 2000

k 5

offset 8

Table 2. Prior Hyperparameters

E.2. Prior Training

The prior model is a simple CVAE (Sohn et al., 2015) that conditions on MineCLIP (Fan et al., 2022) text embeddings and
models the conditional distribution of visual embeddings given the corresponding text embedding. This model is trained
on a combination of around 2,000 hand-labeled trajectory segments and augmented with additional data by automatically
searching for text-gameplay pairs from our gameplay dataset. This is done using the following steps:

1. Combine the 2,000 text labels with 8,000 additional labels generated by querying gpt-3.5-turbo.

2. For each of these 10,000 text labels, search through 1,000 episodes sampled from the gameplay dataset to find the top 5
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Hyperparameter Name Value

trunc_t 64

T 640

batch_size 12

num_workers 4

weight_decay 0.039428

n_frames 160M

learning_rate 4e-5

optimizer AdamW (Loshchilov and Hutter, 2019)

warmup_frames 10M

p_uncond 0.1

min_btwn_goals 15

max_btwn_goals 200

vpt_architecture 2x

Table 3. Policy Hyperparameters

closest visual MineCLIP embeddings to the text embedding of the text label.

These 50,000 automatically-mined text-video pairs are added to the original 2,000 hand-labeled examples to form the final
dataset used for prior training.

We noticed when prompting STEVE-1 using visual goals that when the visual goal showed the agent hitting a block but not
following through and breaking it that STEVE-1 actually avoided breaking blocks. Unfortunately, many of the automatically
discovered text-gameplay clips include gameplay of this kind. In order to prevent this issue, we added an offset to the
embeddings found in this manner. By selecting embeddings from a timestep offset steps after the originally-selected
timestep, the agent is much more likely to follow through with breaking blocks.

We trained our prior model for 50 epochs on this dataset and used early-stopping with a small validation set. An exhaustive
list of hyperparameters used for creating the prior model can be found at Table 2.

F. Additional Visualizations
F.1. MineCLIP Evaluation

We ran MineCLIP evaluation on both text and visual prompts. The MineCLIP evaluation results can be found in Figure 13.

F.2. Steerability with Programmatic Metrics

Similar to Figure 20 in the VPT appendix (Baker et al., 2022), we plot the programmatic metric performances (mean
and 95% confidence intervals) across the different goal prompt conditioning, both using visual prompts (Figure 15) and
text prompts with CVAE prior (Figure 16) conditioning, on our policy trained with hyperparameters in Table 3 and using
conditional scaling λ = 7 (for visual prompts) and λ = 6.0 (for text prompts with CVAE prior). Each conditioning variant
is run with 10 trials, each trial with a different environmental seed and with an episode length of 3000 timesteps (2.5
minutes gameplay). Across the conditioning variant, we use the same set of environmental seeds. For comparison, we
also plot the metrics for an unconditional VPT (early_game) agent (“VPT (uncond)”) and the text-conditioned agent
investigated in VPT appendix (Baker et al., 2022) (“VPT (text)*”) when conditioned on the relevant text. When using visual
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Figure 11. MineCLIP Text Evaluation
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Figure 12. MineCLIP Visual Evaluation

Figure 13. MineCLIP Evaluation. We measure the cosine distance between the goal embedding given to the agent and the MineCLIP
video embeddings throughout the episode and record the minimum across the episode. Dashed box indicates the minimum along the
row, and the number in the diagonal box indicates the rank of the diagonal element (0 is minimum) in the row. Left: We use the prior
to convert the text into the goal embedding. Across our 11 text MineCLIP evaluation tasks, STEVE-1 achieves the shortest distance
between the episode and the MineCLIP goal embedding when prompted appropriately for most cases. This shows the strong general
performance of STEVE-1 across a wide variety of short-horizon tasks. Right: We embed the visual goal loops (Figure 14) with MineCLIP
video encoder. Across our 11 visual MineCLIP evaluation tasks, STEVE-1 achieves the shortest distance between the episode and the
MineCLIP goal embedding when prompted appropriately except for in two cases, where it mixes up digging and dirt and swimming and
going underwater. This shows the strong general performance of STEVE-1 across a wide variety of short-horizon tasks.

goal conditioning, we the use MineCLIP video encoder to embed a 16-frame clip of the agent performing the desired task
taken from our training dataset. An example frame from each of the visual goals is illustrated in Figure 14. When using text
VAE goal conditioning, we use the MineCLIP text encoder to encode the text prompts (Table 4) and use the CVAE prior to
sample the goal embedding from the MineCLIP text embedding.

We note several differences in our experimental setup compared to that in VPT (Baker et al., 2022). We only run our
evaluation episodes for 3000 timesteps, equivalent to 2.5 minutes of gameplay, compared to 5 minutes in the VPT paper. Due
to a limited computational budget, we generate 10 episodes per conditioning variant, and 110 episodes for the unconditional
(“VPT (uncond)”), compared to VPT’s 1000 episodes. Lastly, when measuring the inventory count, we log the maximum
inventory count seen throughout the episode, which is a lower bound on the potential number of items collected since the
agent can later throw out, place, or use these items to craft. As a result of these caveats, we denote the “VPT (text)*” legend
in Figure 15 and Figure 16 with an asterisk as we use the results reported in (Baker et al., 2022) directly for comparison.

We make several observations. First, we observe that our agents is more steerable: when conditioned to collect certain items
(in bold), the agent collects (relatively) many more of those items than when conditioned on other instructions unrelated to
that item, as well as compared to the unconditional VPT. When conditioned on tasks unrelated to the item (e.g. break a flower
when interested in measuring logs collected), we also observe that the agent pursues that item less than the unconditional
agent. Second, we observe that for the bolded instructions which we expect to stand out, we outperform VPT performance
(dashed blue line) (Baker et al., 2022), even with half the amount of time in the episode rollout. This suggests that our agent
is both more steerable relative to the unconditioned VPT agent and the text-conditioned VPT agent investigated in the VPT
appendix (Baker et al., 2022).

F.3. Prompt Chaining Visualization

We visualize two specific episodes from the prompt chaining experiments in Section 4.3 in Figure 17 and Figure 18.
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Figure 14. Sample frames from each of the 11 visual goals. Note that the text overlaid on the frame is not present when we encode the
16-frame clip with MineCLIP video encoder, and is only present for the figure visualization.

Conditioning Variant Name Text Prompt
dig as far as possible dig as far as possible

get dirt get dirt
look at the sky look at the sky
break leaves break leaves
chop a tree chop a tree

collect seeds collect seeds
break a flower break a flower

go explore go explore
go swimming go swimming
go underwater go underwater
open inventory open inventory

get dirt . . . get dirt, dig hole, dig dirt, gather a ton of dirt, collect dirt
chop down the tree . . . chop down the tree, gather wood, pick up wood, chop it down, break tree

break tall grass . . . break tall grass, break grass, collect seeds, punch the ground, run around in circles
getting seeds from bushes

Table 4. Strings corresponding to each conditioning variant for the text VAE conditioning. For conditioning variants without “. . . ”, the
text prompt is the same as the conditioning variant name.
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Figure 15. Conditioning with Visual Goals. We plot the performance of the programmatic metrics, along with their mean values and
95% confidence intervals, across different goal conditioning. See Figure 14 for visualization of these visual prompts. Plots are similar to
Figure 20 in the VPT appendix (Baker et al., 2022). Each conditioning variant is run with 10 trials, each with a different environmental
seed and with an episode length of 3000 time steps (2.5 minutes gameplay). We use the policy that was trained using the hyperparameters
specified in Table 3, and with conditional scaling values λ = 7. The dashed horizontal lines refer to an unconditional VPT agent (“VPT
(uncond)”) and a text-conditioned agent from the VPT appendix (“VPT (text)*”) that was conditioned on the relevant text, for the purpose
of comparison.
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Figure 16. Conditioning with text goals. See Table 4 for the text string used for each conditioning variant. We use the same policy model
but with a conditional scaling value λ = 6. We observe strong steerability which outperforms VPT text conditioning in (Baker et al.,
2022), and we observe that more specific prompt engineered text can lead to improvements.

23



A Generative Model for Text Control in Minecraft

0 500 1000 1500 2000 2500 3000

Episode Timestep

0

5

10

15

20

25

30

35

D
ir

t
in

In
v
e
n
to

ry

1 2 3 4

70

75

80

85

90

95

100

105

A
g
e
n
t

H
e
ig

h
t

P
o
si

ti
o
nBuild a Tower

1: Frame #52

3: Frame #2015

2: Frame #1500

4: Frame #2540

Figure 17. Build a Tower task. (Left) We track the amount of dirt in the inventory and the agent’s height position (y-axis) throughout the
episode. In the first 1500 timesteps, the agent is conditioned on the visual get dirt goal, then the agent is conditioned on the visual build a
tower goal for the final 1500 timesteps. Vertical dotted lines with numbers indicate the corresponding frames on the right. (Right) The
agent’s observation frames at 4 different points in the episode. First the agent collects dirt, then begins to build the tower using the dirt
blocks.

0 500 1000 1500 2000 2500 3000

Episode Timestep

0

1

2

3

4

5

6

7

L
o
g
s

in
In

v
e
n
to

ry

1 2 3 4

0

5

10

15

20

25

30

35

P
la

n
k
s

in
In

v
e
n
to

ry

Make Wooden Planks
1: Frame #220

3: Frame #1500

2: Frame #876

4: Frame #1540

Figure 18. Make Wooden Planks task. (Left) We track the number of logs and planks in the inventory. In the first 1500 timesteps, the
agent is conditioned on the visual break wood goal, then the agent is conditioned on crafting the visual wooden planks goal for the final
1500 timesteps. Similarly to Figure 17, a vertical dotted line annotated with a number indicates the corresponding frame to the right.
(Right) The agent’s observation frames at 4 different points in the episode. First the agent breaks trees to collect wooden logs, then opens
the inventory and crafts wooden planks.
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