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Abstract
Standard contextual bandit problem assumes that
all the relevant contexts are observed before the al-
gorithm chooses an arm. This modeling paradigm,
while useful, often falls short when dealing with
problems in which valuable additional context
can be observed after arm selection. For example,
content recommendation platforms like Youtube,
Instagram, Tiktok also observe valuable follow-
up information pertinent to the user’s reward after
recommendation (e.g., how long the user stayed,
what is the user’s watch speed, etc.). To improve
online learning efficiency in these applications,
we study a novel contextual bandit problem with
post-serving contexts and design a new algorithm,
poLinUCB, that achieves tight regret under stan-
dard assumptions. Core to our technical proof is
a robustified and generalized version of the well-
known Elliptical Potential Lemma (EPL), which
can accommodate noise in data. Such robustifi-
cation is necessary for tackling our problem, and
we believe it could also be of general interest.
Extensive empirical tests on both synthetic and
real-world datasets demonstrate the significant
benefit of utilizing post-serving contexts as well
as the superior performance of our algorithm over
the state-of-the-art approaches.

1. Introduction
Contextual bandits represent a fundamental mathematical
model that is employed across a variety of applications, such
as personalized recommendations (Li et al., 2010; Wu et al.,
2016) and online advertising (Schwartz et al., 2017; Nuara
et al., 2018). In their conventional setup, at each round t, a
learner observes the context xt, selects an arm at ∈ A, and
subsequently, observes its associated reward rt,at

. Despite
being a basic and influential framework, it may not always
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capture the complexity of real-world scenarios (Wang et al.,
2016; Yang et al., 2020). Specifically, the learner often
observes valuable follow-up information pertinent to the
payoff post arm selection (henceforth, the post-serving con-
text). Standard contextual bandits framework that neglects
such post-serving contexts may result in significantly sub-
optimal performance due to model misspecification.

Consider an algorithm designed to recommend educational
resources to a user by utilizing the user’s partially com-
pleted coursework, interests, and proficiency as pre-serving
context (exemplified in platforms such as Coursera). After
completing the recommendation, the system can refine the
user’s profile by incorporating many post-serving context
features such as course completion status, how much time
spent on different educational resources, performances, etc.
This transition naturally delineates a mapping from user
attributes (i.e., the pre-serving context) to user’s learning
experiences and outcomes (i.e., the post-serving context). It
is not difficult to see that similar scenarios happen in many
other recommender system applications. For instance, in
e-commerce platforms (e.g., Amazon, Etsy or any retailing
website), the system will first recommend products based on
the user’s profile information, purchasing pattern and brows-
ing history, etc.; post recommendations, the system can then
update these information by integrating post-serving con-
texts such as this recent purchase behaviour and product
reviews. Similarly, media content recommendation plat-
forms like Youtube, Instagram and Tiktok, also observe
many post-serving features (e.g., how long the user stayed)
that can refine the system’s estimation about users’ interac-
tion behavior as well as the rewards.

A common salient point in all the aforementioned scenarios
is that the post-serving context are prevalent in many rec-
ommender systems; moreover, despite being unseen during
the recommendation/serving phase, they can be estimated
from the pre-serving context given enough past data. More
formaly, we assume that there exists a learnable mapping
ϕ⋆(·) : Rdx → Rdz that maps pre-serving feature x ∈ Rdx

to the expectation of the post-serving feature z ∈ Rdz , i.e.,
E[z|x] = ϕ⋆(x).

Unsurprisingly, and as we will also show, integrating the es-
timation of such post-serving features can significantly help
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to enhance the performance of contextual bandits. How-
ever, most of the existing contextual bandit algorithms,
e.g., (Auer, 2002; Li et al., 2010; Chu et al., 2011; Agarwal
et al., 2014; Tewari and Murphy, 2017), are not designed to
accommodate the situations with post-serving contexts. We
observe that directly applying these algorithms by ignoring
post-serving contexts may lead to linear regret, whereas sim-
ple modification of these algorithms will also be sub-optimal.
To address these shortcomings, this work introduces a novel
algorithm, poLinUCB. Our algorithm leverages historical
data to simultaneously estimate reward parameters and the
functional mapping from the pre- to post-serving contexts
so to optimize arm selection and achieves sublinear regret.
En route to analyzing our algorithm, we also developed new
technique tools that may be of independent interest.

Main Contributions.
• First, we introduce a new family of contextual linear ban-

dit problems. In this framework, the decision-making
process can effectively integrate post-serving contexts,
premised on the assumption that the expectation of post-
serving context as a function of the pre-serving context
can be gradually learned from historical data. This new
model allows us to develop more effective learning al-
gorithms in many natural applications with post-serving
contexts.

• Second, to study this new model, we developed a robusti-
fied and generalized version of the well-regarded elliptical
potential lemma (EPL) in order to accommodate random
noise in the post-serving contexts. While this generalized
EPL is an instrumental tool in our algorithmic study, we
believe it is also of independent interest due to the broad
applicability of EPL in online learning.

• Third, building upon the generalized EPL, we design a
new algorithm poLinUCB and prove that it enjoys a regret
bound Õ(T 1−αdαu +du

√
TK), where T denotes the time

horizon and α ∈ [0, 1/2] is the learning speed of the
pre- to post-context mapping function ϕ⋆(·), whereas
du = dx + dz and K denote the parameter dimension
and number of arms. When ϕ⋆(·) is easy to learn, e.g.,
α = 1/2, the regret bound becomes Õ(

√
Tdu+du

√
TK)

and is tight. For general functions ϕ⋆(·) that satisfy α ≤
1/2, this regret bound degrades gracefully as the function
becomes more difficult to learn, i.e., as α decreases.

• Lastly, we empirically validate our proposed algorithm
through thorough numerical experiments on both simu-
lated benchmarks and real-world datasets. The results
demonstrate that our algorithm surpasses existing state-
of-the-art solutions. Furthermore, they highlight the tan-
gible benefits of incorporating the functional relationship
between pre- and post-serving contexts into the model,
thereby affirming the effectiveness of our modeling.

Related Works. Our work lies in the extensive linear
contextual bandits literature, however, most of existing stud-
ies assume the full contexts are observable before playing
actions (Abe et al., 2003; Auer, 2002; Dani et al., 2008;
Rusmevichientong and Tsitsiklis, 2010; Lu et al., 2010;
Filippi et al., 2010; Li et al., 2010; Chu et al., 2011; Abbasi-
Yadkori et al., 2011; Li et al., 2017; Jun et al., 2017) and they
demonstrate the use of upper confidence bounds for balanc-
ing exploration and exploitation, proving minimax optimal
regret bounds using the confidence ellipsoids and the ellip-
tical potential lemma (EPL). In sharp contrast, we assume
partially observable context in this paper, where only par-
tial contexts are observed before making decisions. Partial
information contextual bandits, though limited, have been
studied (Wang et al., 2016; Qi et al., 2018; Yang et al., 2020;
Park and Faradonbeh, 2021; Yang and Ren, 2021; Zhu and
Kveton, 2022), focusing on predicting context information
through context history analysis or selective expert requests.
Differently, our work introduces a novel problem setting,
separating contexts into pre-serving and post-serving cat-
egories. To achieve near-optimal regret bound in this set-
ting, we propose a generalized elliptical potential lemma to
handle the additional noise introduced by the post-serving
features. While the EPL (Lai and Wei, 1982) and its gener-
alizations have been widely used in stochastic linear bandit
problems (Auer, 2002; Dani et al., 2008; Chu et al., 2011;
Abbasi-Yadkori et al., 2011; Li et al., 2019; Zhou et al.,
2020; Wang et al., 2022; Carpentier et al., 2020; Hamidi and
Bayati, 2022), they fall short for the analysis in our context.
See Appendix A.1 for further related works.

2. Linear Bandits with Post-serving Contexts
Basic setup. We hereby delineate a basic setup of linear
contextual bandits within the scope of the partial informa-
tion setting, whereas multiple generalizations of our frame-
work can be found in Section 5. This setting involves a
finite and discrete action space, represented as A = [K].
Departing from the classic contextual bandit setup, the con-
text in our model is bifurcated into two distinct components:
the pre-serving context, denoted as x ∈ Rdx , and the post-
serving context, signified as z ∈ Rdz . When it is clear from
context, we sometimes refer to pre-serving context simply as
context as in classic setup, but always retain the post-serving
context notion to emphasize its difference. We will denote
Xt =

∑t
s=1 xsx

⊤
s + λI and Zt =

∑t
s=1 zsz

⊤
s + λI . For

the sake of brevity, we employ u = (x, z) to symbolize
the stacked vector of x and z, with du = dx + dz and
∥u∥2 ≤ Lu. The pre-serving context is available during
arm selection, while the post-serving context is disclosed
post the arm selection. For each arm a ∈ A, the payoff,
ra(x, z), is delineated as follows:

ra(x, z) = x⊤θ⋆
a + z⊤β⋆

a + η,
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where θ⋆
a and β⋆

a represent the parameters associated with
the arm, unknown to the learner, whereas η is a ran-
dom noise sampled from an Rη-sub-Gaussian distribution.
We use ∥x∥p to denote the p-norm of a vector x, and
∥x∥A :=

√
x⊤Ax is the matrix norm. For convenience,

we assume ∥θ⋆
a∥2 ≤ 1 and ∥β⋆

a∥2 ≤ 1 for all a ∈ A. Ad-
ditionally, we posit that the norm of the pre-serving and
post-serving contexts satisfies ∥x∥2 ≤ Lx and ∥z∥2 ≤ Lz ,
respectively, and maxt∈[T ] supa,b∈A⟨θ⋆

a − θ⋆
b ,xt⟩ ≤ 1 and

maxt∈[T ] supa,b∈A⟨β⋆
a − β⋆

b , zt⟩ ≤ 1, same as in (Latti-
more and Szepesvári, 2020).

2.1. Problem Settings and Assumptions.

The learning process proceeds as follows at each time step
t = 1, 2, · · · , T :

1. The learner observes the context xt.
2. An arm at ∈ [K] is selected by the learner.
3. The learner observes the realized reward rt,at

and
the post-serving context, zt.

Without incorporating the post-serving context, one may
incur linear regret as a result of model misspecification,
as illustrated in the following observation. To see this,
consider a setup with two arms, a1 and a2, and a con-
text x ∈ R drawn uniformly from the set {−3,−1, 1}
with ϕ⋆(x) = x2. The reward functions for the arms
are noiseless and determined as ra1(x) = x + x2/2 and
ra2(x) = −x − x2/2. It can be observed that ra1(x) >
ra2

(x) when x ∈ {−3, 1} and ra1
(x) < ra2

(x) when x =
−1. Any linear bandit algorithm that solely dependent on
the context x (ignoring ϕ⋆(x)) will inevitably suffer from
linear regret, since it is impossible to have a linear func-
tion (i.e., r(x) = θx) that satisfies the above two inequalities
simultaneously.

Observation 1. There exists linear bandit environments
in which any online algorithm without using post-serving
context information will have Ω(T ) regret.

Therefore, it is imperative that an effective learning algo-
rithm must leverage the post-serving context, denoted as zt.
As one might anticipate, in the absence of any relationship
between zt and xt, it would be unfeasible to extrapolate
any information regarding zt while deciding which arm to
pull, a point at which only xt is known. Consequently, it is
reasonable to hypothesize a correlation between zt and xt.
This relationship is codified in the subsequent learnability
assumption.

Specifically, we make the following natural assumption —
there exists an algorithm that can learn the mean of the post-
serving context zt, conditioned on xt. Our analysis will be
general enough to accommodate different convergence rates
of the learning algorithm, as one would naturally expect,

the corresponding regret will degrade as this learning algo-
rithm’s convergence rate becomes worse. More specifically,
we posit that, given the context xt, the post-serving context
zt is generated as1

zt = ϕ⋆(xt) + ϵt, i.e., ϕ⋆(x) = E[z|x].

Here, ϵt is a zero-mean noise vector in Rdz , and ϕ⋆ : Rdx →
Rdz can be viewed as the post-serving context generating
function, which is unknown to the learner. However, we
assume ϕ⋆ is learnable in the following sense.

Assumption 1 (Generalized learnability of ϕ∗). There exists
an algorithm that, given t pairs of examples {(xs, zs)}ts=1

with arbitrarily chosen xs’s, outputs an estimated function
of ϕ⋆ : Rdx → Rdz such that for any x ∈ Rdx , the following
holds with probability at least 1− δ,

eδt :=
∥∥∥ϕ̂t(x)− ϕ⋆(x)

∥∥∥
2
≤ C0 ·

(
∥x∥2

X−1
t

)α
· log (t/δ) ,

where α ∈ (0, 1/2] and C0 is some universal constant.

The aforementioned assumption encompasses a wide range
of learning scenarios, each with different rates of conver-
gence. Generally, the value of α is directly proportional to
the speed of learning; the larger the value of α, the quicker
the learning rate. Later, we will demonstrate that the regret
of our algorithm is proportional to O(T 1−α), exhibiting a
graceful degradation as α decreases. The ensuing proposi-
tion demonstrates that for linear functions, α = 1/2. This
represents the best learning rate that can be accommodated2.
In this scenario, the regret of our algorithm is O(

√
T ), align-

ing with the situation devoid of post-serving contexts (Li
et al., 2010; Abbasi-Yadkori et al., 2011).

Observation 2. Suppose ϕ(·) is a linear function, i.e.,
ϕ(x) = Φ⊤x for some Φ ∈ Rdx×dz , then eδt =

O
(
∥x∥X−1

t
· log (t/δ)

)
.

This observation follows from the following inequalities
∥ϕt(x)− ϕ⋆(x)∥ = ∥Φ̂⊤

t x −Φ⋆⊤x∥ ≤ ∥Φ̂t −Φ⋆∥Xt
·

∥x∥X−1
t

= O(∥x∥X−1
t

· log
(
t
δ

)
), where the last equation

is due to the confidence ellipsoid bound (Abbasi-Yadkori
et al., 2011).

1Given this, an alternative view of ra is to treat it as a function
of x as follows: ra(x) = x⊤θ⋆

a + ϕ⋆(x)⊤β⋆
a + noise. Our

algorithm can be viewed as a two-phase learning of this structured
function, i.e., using (xt,zt) to learn ϕ⋆ that is shared among all
arms and then using learned ϕ̂ to estimate each arm a’s reward
parameters.

2To be precise, our analysis can extend to instances where
α > 1/2. However, this would not enhance the regret bound since
the regret is already Ω(

√
T ), even with knowledge of z. This

would only further complicate our notation, and therefore, such
situations are not explicitly examined in this paper.
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2.2. Warm-up: Why Natural Attempts May Be
Inadequate?

Given the learnability assumption of ϕ⋆, one natural idea for
solving the above problem is to estimate ϕ⋆, and then run the
standard LinUCB algorithm to estimate (θa,βa) together
by treating (xt, ϕ̂t(xt)) as the true contexts. Indeed, this is
the approach adopted by Wang et al. (2016) for addressing
a similar problem of missing contexts zt, except that they
used a different unsurprised-learning-based approach to es-
timate the context zt due to not being able to observing any
data about zt. Given the estimation of ϕ̂, their algorithm
— which we term it as LinUCB (ϕ̂) — iteratively carries
out the steps below at each iteration t (see Appendix 2 for
additional details): 1) Estimation of the context-generating
function ϕ̂t(·) from historical data; 2) Solve of the following
regularized least square problem for each arm a ∈ A, with
regularization coefficient λ ≥ 0:

ℓt(θa,βa) =
∑

s∈[t]:as=a

(
rs,a − x⊤

t θa − ϕ̂s(xs)
⊤βa

)2
+ λ

(
∥θa∥22 + ∥βa∥22

)
, (1)

Under the assumption that the initialized parameters in their
estimations are very close to the global optimum, Wang
et al. (2016) were able to show the O(

√
T ) regret of this

algorithm. However, it turns out that this algorithm will
fail to yield an satisfying regret bound without their strong
assumption on very close parameter initialization, because
the errors arising from ϕ̂(·) will significantly enlarge the
confidence set of θ̂a and β̂a.3 Thus after removing their
initialization assumption, the best possible regret bound we
can possibly achieve is of order Õ(T 3/4), as illustrated in
the subsequent proposition.

Proposition 1 (Regret of LinUCB-(ϕ̂)). The regret
of LinUCB-(ϕ̂) in Algorithm 2 is upper bounded by
Õ
(
T 1−αdαu + T 1−α/2

√
Kd1+α

u

)
with probability at least

1 − δ, by carefully setting the regularization coefficient
λ = Θ(Lud

α
uT

1−α log (T/δ)) in Equation 1.

Since α ∈ [0, 1/2], the best possible regret upper bound
above is Õ(T 3/4), which is considerably inferior to the
sought-after regret bound of Õ(

√
T ). Such deficiency of

LinUCB-(ϕ̂) is further observed in all our experiments in
Section 6 as well. These motivate our following design of a
new online learning algorithm to address the challenge of

3Specifically, Wang et al. (2016) assume that the initial estima-
tion of ϕ̂(·) is already very close to ϕ̂∗(·) such that the error arising
from ϕ̂(·) diminishes exponentially fast due to the local conver-
gence property of alternating least squares algorithm (Uschmajew,
2012). This strong assumption avoids significant expansion of the
confidence sets, but is less realistic in applications so we do not
impose such assumption.

post-serving context, during which we also developed a new
technical tool which may be of independent interest to the
research community.

3. A Robustified and Generalized Elliptical
Potential Lemma

It turns out that solving the learning problem above requires
some novel designs; core to these novelties is a robustified
and generalized version of the well-known elliptical poten-
tial lemma (EPL), which may be of independent interest.
This widely used lemma states a fact about a sequence of
vectors x1, · · · ,xT ∈ Rd. Intuitively, it captures the rate
of the sum of additional information contained in each xt,
relative to its predecessors x1, · · · ,xt−1. Formally,
Lemma (Original Elliptical Potential Lemma). Suppose
(1) X0 ∈ Rd×d is any positive definite matrix; (2)
x1, . . . ,xT ∈ Rd is any sequence of vectors; and (3)
Xt = X0 +

∑t
s=1 xsx

⊤
s . Then the following inequality

holds

T∑
t=1

1 ∧ ∥xt∥2X−1
t−1

≤ 2 log

(
detXT

detX0

)
,

where a ∧ b = min{a, b} is the min among a, b ∈ R.

To address our new contextual bandit setup with post-
serving contexts, it turns out that we will need to robustify
and generlaize the above lemma to accommodate noises
in xt vectors and slower learning rates. Specifically, we
present the following variant of the EPL lemma.

Lemma 1 (Generalized Elliptical Potential Lemma). Sup-
pose (1) X0 ∈ Rd×d is any positive definite matrix; (2)
x1, . . . ,xT ∈ Rd is a sequence of vectors with bounded l2
norm maxt ∥xt∥ ≤ Lx; (3) ϵ1, . . . , ϵT ∈ Rd is a sequence
of independent (not necessarily identical) bounded zero-
mean noises satisfying maxt ∥ϵt∥ ≤ Lϵ and E[ϵtϵ⊤t ] ≽
σ2
ϵI for any t; and (4) X̃t is defined as follows:

X̃t = X0 +

t∑
s=1

(xs + ϵs)(xs + ϵs)
⊤ ∈ Rd×d.

Then, for any p ∈ [0, 1], the following inequality holds with
probability at least 1− δ,

T∑
t=1

(
1 ∧ ∥xt∥2X̃−1

t−1

)p

≤ 2pT 1−p logp
(
detXT

detX0

)
+
8L2

ϵ(Lϵ + Lx)
2

σ4
ϵ

log

(
32dL2

ϵ(Lϵ + Lx)
2

δσ4
ϵ

)
(2)

Note that the second term is independent of time horizon
T and only depends on the setup parameters. Generally,
this can be treated as a constant. Before describing main
proof idea of the lemma, we make a few remarks regarding
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Lemma 1 to highlight the significance of these generaliza-
tions.

1. The original Ellipsoid Prediction Lemma (EPL) corre-
sponds to the specific case of p = 1, while Lemma 1 is
applicable for any p ∈ [0, 1]. Notably, the (1 − p) rate
in the T 1−p term of Inequality 2 is tight for every p. In
fact, this rate is tight even for xt = 1 ∈ R,∀t and X0 =
1 ∈ R since, under these conditions, ∥xt∥2X−1

t−1
= 1/t

and, consequently,
∑T

t=1

(
1 ∧ ∥xt∥2X−1

t−1

)p

=
∑T

t=1 t
−p,

yielding a rate of T 1−p. This additional flexibility gained
by allowing a general p ∈ [0, 1] (with the original EPL
corresponding to p = 1) helps us to accommodate slower
convergence rates when learning the mean context from
observed noisy contexts, as formalized in Assumption 1.

2. A crucial distinction between Lemma 1 and the original
EPL lies in the definition of the noisy data matrix X̃t in
Equation 1, which permits noise. However, the measured
context vector xt does not have noise. This is beneficial
in scenarios where a learner observes noisy contexts but
seeks to establish an upper bound on the prediction error
based on the underlying noise-free context or the mean
context. Such situations are not rare in real applications;
our problem of contextual bandits with post-serving con-
texts is precisely one of such case — while choosing an
arm, we can estimate the mean post-serving context con-
ditioned on the observable pre-serving context but are
only able to observe the noisy realization of post-serving
contexts after acting.

3. Other generalized variants of the EPL have been recently
proposed and found to be useful in different contexts.
For instance, (Carpentier et al., 2020) extends the EPL to
allow for the X−p

t -norm, as opposed to the X−1
t -norm,

while (Hamidi and Bayati, 2022) explores a generalized
form of the 1 ∧ ∥φ(xt)∥2X−1

t−1
term, which is motivated

by variance reduction in non-Gaussian linear regression
models. Nevertheless, to the best of our knowledge, our
generalized version is novel and has not been identified
in prior works.

Proof Sketche of Lemma 1. The formal proof of this lemma
is involved and deferred to Appendix C.1. At a high level,
our proof follows procedure for proving the original EPL.
However, to accommodate the noises in the data matrix, we
have to introduce new matrix concentration tools to the orig-
inal (primarily algebraic) proof, and also identify the right
conditions for the argument to go through. A key lemma
to our proof is a high probability bound regarding the con-
structed noisy data matrix X̃t (Lemma 2 in Appendix C.1)
that we derive based on Bernstein’s Inequality for matrices
under spectral norm (Tropp et al., 2015). We prove that, un-
der mild assumptions on the noise, ∥xt∥2X̃−1

t−1

≤ ∥xt∥2X−1
t−1

with high probability for any t. Next, we have to apply the

union bound and this lemma to show that the above ma-
trix inequality holds for every t ≥ 1 with high probability.
Unfortunately, this turns out to not be true because when
t is very small (e.g., t = 1), the above inequality cannot
hold with high probability. Therefore, we have to use the
union bound in a carefully tailored way by excluding all t’s
that are smaller than a certain threshold (chosen optimally
by solving certain inequalities) and handling these terms
with small t separately (which is the reason of the second
O(log(1/δ)) term in Inequality 2). Finally, we refine the
analysis of sthe standard EPL by allowing the exponent p
in (1 ∧ ∥xt∥2X̃−1

t−1

)p and derive an upper bound on the sum∑T
t=1(1 ∧ ∥xt∥2X̃−1

t−1

)p with high probability. These together
yeilds a robustified and generalized version of EPL as in
Lemma 1.

4. No Regret Learning in Linear Bandits with
Post-Serving Contexts

4.1. The Main Algorithm

In the ensuing section, we introduce our algorithm, poLin-
UCB, designed to enhance linear contextual bandit learn-
ing through the incorporation of post-serving contexts and
address the issue arose from the algorithm introduced in
Section 2.2. The corresponding pseudo-code is delineated
in Algorithm 1. Unlike the traditional LinUCB algorithm,
which solely learns and sustains confidence sets for pa-
rameters (i.e., β̂a and θ̂a for each a), our algorithm also
simultaneously manages the same for the post-serving con-
text generating function, ϕ̂(·). Below, we expound on our
methodology for parameter learning and confidence set con-
struction.

Parameter learning. During each iteration t, we fit
the function ϕ̂t(·) and the parameters {θ̂t,a}a∈A and
{β̂t,a}a∈A. To fit ϕ̂t(·), resort to the conventional empirical
risk minimization (ERM) framework. As for {θ̂t,a}a∈A and
{β̂t,a}a∈A, we solve the following least squared problem
for each arm a,

ℓt(θa,βa) =
∑

s∈[t]:as=a

(
rs,a − x⊤

s θa − zs
⊤βa

)2
+ λ

(
∥θa∥22 + ∥βa∥22

)
. (3)

For convenience, we use w and u to denote (θ,β) and
(x, z) respectively. The closed-form solutions to θ̂t,a and
β̂t,a for each arm a ∈ A are

ŵt,a :=

[
θ̂t,a
β̂t,a

]
= A−1

t,abt,a (4)

At,a = λI +
∑t

s:as=a usu
⊤
s and bt,a =

∑t
s:as=a rs,aus.
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Algorithm 1 poLinUCB (Linear UCB with post-serving contexts)

1: for t = 0, 1, . . . , T do
2: Receive the pre-serving context xt

3: Compute the optimistic parameters by maximizing the UCB objective

(
at, ϕ̃t(xt), w̃t

)
= argmax

(a,ϕ,wa)∈[K]×Ct−1(ϕ̂t−1,xt)×Ct−1(ŵt−1,a)

[
xt

ϕ(xt)

]⊤
wa.

4: Play the arm at and receive the realized post-serving context as zt and the real-valued reward

rt,at
=

[
xt

zt

]⊤
w⋆

at
+ ηt.

5: Compute ŵt,a using Equation 3 for each a ∈ A.
6: Compute the estimated post-serving context generating function ϕ̂t(·) using ERM.
7: Update confidence sets Ct(ŵt,a) and Ct(ϕ̂t,xt) for each a based on Equations 6 and 5.
8: end for

Confidence set construction. At iteration t, we construct
the confidence set for ϕ̂t(xt) by

Ct
(
ϕ̂t,xt

)
:=
{
z ∈ Rd :

∥∥∥ϕ̂t(xt)− z
∥∥∥
2
≤ eδt

}
. (5)

Similarly, we can construct the confidence set for the param-
eters ŵt,a for each arm a ∈ A by

Ct (ŵt,a) :=
{
w ∈ Rdx+dz : ∥w − ŵt,a∥At,a

≤ ζt,a

}
, (6)

where ζt,a = 2
√
λ+Rη

√
du log ((1 + nt(a)L2

u/λ)/δ) and
nt(a) =

∑t
s=1 1[as = a]. Additionally, we further define

ζt := maxa∈A ζt,a. By the assumption 1 and Lemma 3, we
have the followings hold with probability at least 1− δ for
each of the following events,

ϕ⋆(xt) ∈ Ct
(
ϕ̂t,xt

)
and w⋆ ∈ Ct (ŵt,a) . (7)

4.2. Regret Analysis

In the forthcoming section, we establish the regret bound.
Our proof is predicated upon the conventional proof of Lin-
UCB (Li et al., 2010) in conjunction with our robust ellip-
tical potential lemma. The pseudo-regret (Audibert et al.,
2009) within this partial contextual bandit problem is de-
fined as,

RT = Regret(T ) =
T∑

t=1

(
rt,a⋆

t
− rt,at

)
, (8)

in which we reload the reward by ignoring the noise,

rt,a = ⟨θ⋆
a,xt⟩+ ⟨β⋆

a, ϕ
⋆(xt)⟩, (9)

where a⋆t = argmaxa∈A ⟨θ⋆
a,xt⟩ + ⟨β⋆

a, ϕ
⋆(xt)⟩. It is

crucial to note that our definition of the optimal action, a⋆t ,

in Eq. 9 depends on ϕ⋆(xt) as opposed to zt. This depen-
dency ensures a more pragmatic benchmark, as otherwise,
the noise present in z would invariably lead to a linear regret,
regardless of the algorithm implemented. In the ensuing sec-
tion, we present our principal theoretical outcomes, which
provide an upper bound on the regret of our poLinUCB
algorithm.

Theorem 1 (Regret of poLinUCB). The regret of
poLinUCB in Algorithm 1 is upper bounded by
Õ
(
T 1−αdαu + du

√
TK

)
with probability at least 1 − δ,

if T = Ω(log(1/δ)).

The first term in the bound is implicated by learning the
function ϕ⋆(·). Conversely, the second term resembles the
one derived in conventional contextual linear bandits, with
the exception that our dependency on du is linear. This
linear dependency is a direct consequence of our generalized
robust elliptical potential lemma. The proof is deferred in
Appendix C.2.

5. Generalizations
So far we have focused on a basic linear bandit setup with
post-serving features. Our results and analysis can be easily
generalized to other variants of linear bandits, including
those with feature mappings, and below we highlight some
of these generalizations. They use similar proof ideas, up to
some technical modifications; we thus defer all their formal
proofs to Appendix C.3.

5.1. Generalization to Action-Dependent Contexts

Our basic setup in Section 2 has a single context xt at any
time step t. This can be generalized to action-dependent
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contexts settings as studied in previous works (e.g., Li et al.
(2010)). That is, during each iteration indexed by t, the
learning algorithm observes a context xt,a for each individ-
ual arm a ∈ A. Upon executing the action of pulling arm at,
the corresponding post-serving context zt,at

is subsequently
revealed. Notwithstanding, the post-serving context for all
alternative arms remains unobserved. The entire procedure
is the same as that of Section 2.

In extending this framework, we persist in our assumption
that for each arm a ∈ A, there exists a specific function
ϕ⋆
a(·) : Rdx → Rdz that generates the post-serving context

z upon receiving x associated with arm a ∈ A. The primary
deviation from our preliminary setup lies in the fact that we
now require the function ϕ⋆

a(·) to be learned for each arm
independently. The reward is generated as

rt,at = ⟨θ⋆
at
,xt,at⟩+ ⟨β⋆

at
, zt,at⟩+ ηt.

The following proposition shows our regret bound for this
action-dependent context case. Its proof largely draws upon
the proof idea of Theorem 1 and also relies on the general-
ized EPL Lemma 1.
Proposition 2. The regret of poLinUCB in Algorithm 1
for action-dependent contexts is upper bounded by
Õ
(
T 1−αdαu

√
K + du

√
TK

)
with probability at least 1−δ

if T = Ω(log(1/δ)).

The main difference with the bound in Theorem 1 is the
additional

√
K appeared in the first term, which is caused

by learning multiple ϕ⋆
a(·) functions with a ∈ A.

5.2. Generalization to Linear Stochastic Bandits

Another variant of linear bandits is the linear stochastic
bandits setup (see, e.g., (Abbasi-Yadkori et al., 2011)). This
model allows infinitely many arms, which consists of a de-
cision set Dt ⊆ Rd at time t, and the learner picks an action
xt ∈ Dt. This setup naturally generalizes to our prob-
lem with post-serving contexts. That is, at iteration t, the
learner selects an arm xt ∈ Dt first, receives reward rt,xt

,
and then observe the post-serving feature zt conditioned
on xt. Similarly, we assume the existence of a mapping
ϕ⋆(xt) = E[zt|xz] that satisfies the Assumption 1. Conse-
quently, the realized reward is generated as follows where
θ∗,β∗ are unknown parameters:

rt,xt
= ⟨xt,θ

⋆⟩+ ⟨zt,β⋆⟩+ ηt.

Therefore, the learner needs to estimate the linear param-
eters θ̂ and β̂, as well as the function ϕ̂(·). We obtain the
following proposition for the this setup.
Proposition 3. The regret of poLinUCB in Algo-
rithm 1 for the above setting is upper bounded by
Õ
(
T 1−αdαu + du

√
T
)

with probability at least 1 − δ if

T = Ω(log(1/δ)).

5.3. Generalization to Linear Bandits with Feature
Mappings

Finally, we briefly remark that while we have so far assumed
that the arm parameters are directly linear in the context
xt, zt, just like classic linear bandits our analysis can be
easily generalized to accommodate feature mapping πx(xt)
and πz(zt) = πz(ϕ(xt) + εt). Specifically, if the reward
generation process is ra = ⟨θ⋆

a, π
x(xt)⟩+⟨β⋆

a, π
z(zt)⟩+ηt

instead, then we can simply view x̃t = πx(xt) and z̃t =
πz(zt) as the new features, with ϕ̃(xt) = Eϵt [π

z(ϕ(xt) +
ϵt)]. By working with x̃t, z̃t, ϕ̃, we shall obtain the same
guarantees as Theorem 1.

6. Experiments
This section presents a comprehensive evaluation of our
proposed poLinUCB algorithm on both synthetic and real-
world data, demonstrating its effectiveness in incorporating
follow-up information and outperforming the LinUCB(ϕ̂)
variant.

6.1. Synthetic Data with Ground Truth Models

Evaluation Setup. We adopt three different synthetic envi-
ronments that are representative of a range of mappings from
the pre-serving context to the post-serving context: poly-
nomial, periodicical and linear functions. The pre-serving
contexts are sampled from a uniform noise in the range
[−10, 10]dx , and Gaussian noise is employed for both the
post-serving contexts and the rewards. In each environ-
ment, the dimensions of the pre-serving context (dx) and
the post-serving context (dz) are of 100 and 5, respectively
with 10 arms (K). The evaluation spans T = 1000 or 5000
time steps, and each experiment is repeated with 10 differ-
ent seeds. The cumulative regret for each policy in each
environment is then calculated to provide a compararison.

Results and Discussion. Our experimental results, which
are presented graphically in Figures 1, provide strong evi-
dence of the superiority of our proposed poLinUCB algo-
rithm. Across all setups, we observe that the LinUCB (x
and z) strategy, which has access to the post-serving context
during arm selection, consistently delivers the best perfor-
mance, thus serving as the upper bound for comparison. On
the other hand, the Random policy, which does not exploit
any environment information, performs the worst, serving
as the lower bound. Our proposed poLinUCB (ours) out-
performs all the other strategies, including the LinUCB (ϕ̂)
variant, in all three setups, showcasing its effectiveness in
adaptively handling various mappings from the pre-serving
context to the post-serving context. Importantly, poLinUCB
delivers significantly superior performance to LinUCB (x
only), which operates solely based on the pre-serving con-
text.
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Figure 1: Cumulative Regret in three synthetic environments. Comparisons of different algorithms in terms of cumulative
regret across the three synthetic environments. Our proposed poLinUCB (ours) consistently outperforms other strategies (ex-
cept for LinUCB which has access to the post-serving context during arm selection), showcasing its effectiveness in utilizing
post-serving contexts. The shaded area denotes the standard error computed using 10 different random seeds.
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Figure 2: Results on MovieLens.

6.2. Real World Data without Ground Truth

Evaluation Setup. The evaluation was conducted on a
real-world dataset, MovieLens (Harper and Konstan, 2015),
where the task is to recommend movies (arms) to a incom-
ing user (context). Following Yao et al. (2023), we first map
both movies and users to 32-dimensional real vectors using
a neural network trained for predicting the rating. Initially,
K = 5 movies were randomly sampled to serve as our arms
and were held fixed throughout the experiment. The user
feature vectors were divided into two parts serving as the
pre-serving context (dx = 25) and the post-serving con-
text (dz = 7). We fit the function ϕ(x) using a two-layer
neural network with 64 hidden units and ReLU activation.
The network was trained using the Adam optimizer with
a learning rate of 1e-3. At each iteration, we randomly
sampled a user from the dataset and exposed only the pre-
serving context x to our algorithm. The reward was com-
puted as the dot product of the user’s feature vector and the
selected movie’s feature vector and was revealed post the
movie selection. The evaluation spanned T = 500 iterations
and repeated with 10 seeds.

Results and Discussion. The experimental results, pre-
sented in Figure 2, demonstrate the effectiveness of our
proposed algorithm. The overall pattern is similar to it ob-

served in our synthetic experiments. Our proposed policy
consistently outperforms the other strategies (except for
LinUCB with both pre-serving and post-serving features).
Significantly, our algorithm yields superior performance
compared to policies operating solely on the pre-serving
context, thereby demonstrating its effectiveness in leverag-
ing the post-serving information.

7. Conclusions and Limitations
In this work, we have introduced a novel contextual bandit
framework that incorporates post-serving contexts, thereby
widening the range of complex real-world challenges it can
address. By leveraging historical data, our proposed algo-
rithm, poLinUCB, estimates the functional mapping from
pre-serving to post-serving contexts, leading to improved
online learning efficiency. For the purpose of theoretical
analysis, the elliptical potential lemma has been expanded to
manage noise within post-serving contexts, a development
which may have wider applicability beyond this particular
framework. Extensive empirical tests on synthetic and real-
world datasets have demonstrated the significant benefits of
utilizing post-serving contexts and the superior performance
of our algorithm compared to state-of-the-art approaches.

Our theoretical analysis hinges on the assumption that the
function ϕ⋆(·) is learnable, a condition that may not always
be feasible. This especially applies to settings where the
post-serving contexts may hold additional information that
cannot be deduced from the pre-serving context, irrespec-
tive of the amount of data collected. In such scenarios,
no function mapping from the pre-serving context to the
post-serving context will satisfy the learnability assumption.
Consequently, a linear regret is inevitable, and it will be
proportional to the level of misspecification. However, from
a practical point of view, our empirical findings from the
real-world MovieLens dataset demonstrate that modeling
the functional relationship between the pre-serving and post-
serving contexts can significantly enhance recommendation.
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A. Extended Discussions
A.1. Related Works

Contextual bandits. The literature on (generalized) linear (contextual) bandits is extensive, as evidenced by numerous
studies (Abe et al., 2003; Auer, 2002; Dani et al., 2008; Rusmevichientong and Tsitsiklis, 2010; Lu et al., 2010; Filippi
et al., 2010; Li et al., 2010; Chu et al., 2011; Abbasi-Yadkori et al., 2011; Li et al., 2017; Jun et al., 2017). These approaches
predominantly employ upper confidence bounds as a means of balancing exploration and exploitation, leading to the
attainment of minimax optimal regret bounds. The derivation of these regret bounds principally hinges on the utilization of
confidence ellipsoids and the elliptical potential lemma. All these works assume that the contextual information governing
the payoff is full observable. In contrast, our work focuses on scenarios where the context is not completely observable
during arm selection, thereby presenting additional complexities in managing the partially available information.

Contextual bandits with partial information. Contextual bandits with partial information has been relatively limited in
the literature. Initial progress in this area was made by Wang et al. (2016), who studied settings with hidden contexts. In
their setup there is some context (the post-serving context in our model) that can never by observed by the learner, whereas
in our setup the learner can observe post-serving context but only after pulling the arm. Under the assumption that if the
parameter initialization is extremely close to the true optimal parameter, then they develop a sub-linear regret algorithm.
Our algorithm does not need such strong assumption on parameter initialization and we also show that their approach may
perform poorly in our setup. Subsequent research by Qi et al. (2018); Yang et al. (2020); Park and Faradonbeh (2021); Yang
and Ren (2021); Zhu and Kveton (2022) investigated scenarios with noisy or unobservable contexts. In these studies, the
learning algorithm was designed to predict context information online through context history analysis, or selectively request
context data from an external expert. Our work, on the other hand, introduces a novel problem setting that separates contexts
into pre-serving and post-serving categories, enabling the exploration of a wide range of problems with varying learnability.
Additionally, we also need to employ new techniques for analyzing our problem to get a near-optimal regret bound.

Generalizing the elliptical potential lemma (EPL). The EPL, introduced by Lai and Wei (1982), serves as a critical
component in quantifying the rate at which uncertainty decreases with the addition of more observations. Initially employed
in the analysis of stochastic linear regression, the EPL has since been extensively utilized in stochastic linear bandit
problems (Auer, 2002; Dani et al., 2008; Chu et al., 2011; Abbasi-Yadkori et al., 2011; Li et al., 2019; Zhou et al., 2020;
Wang et al., 2022). Researchers have also proposed various generalizations of the EPL to accommodate diverse assumptions
and problems. For example, (Carpentier et al., 2020) extended the EPL by allowing for the use of the X−p

t -norm, as
opposed to the traditional X−1

t -norm. Meanwhile, (Hamidi and Bayati, 2022) investigated a generalized form of the
1 ∧ ∥φ(xt)∥2X−1

t−1
term, which was inspired by the pursuit of variance reduction in non-Gaussian linear regression models.

However, existing (generalized) EPLs are inadequate for the analysis presented herein.

B. Algorithm and Regret Analysis of LinUCB(ϕ̂)
We present the details of the algorithm described in Section 2.2 and the proof of the regret bound.

B.1. Main Algorithm

Parameter learning. We consider solving the following regularized least squared problem for estimating {θ̂t,a}a∈A and
{β̂t,a}a∈A for each arm a:

ℓt(θa,βa) =

t∑
s:as=a

(
rs,a − x⊤

t θa − ϕ̂s(xs)
⊤βa

)2
+ λ

(
∥θa∥22 + ∥βa∥22

)
, (10)

where λ ≥ 0 are penalty factors ensuring the uniqueness of minimizers θ̂t,a and β̂t,a.

In the same convention, we use w to denote (θ,β), and u to denote
(
x, ϕ̂(x)

)
. The closed-form solutions for θ̂t,a and

β̂t,a in this least squared problem then become:

ŵt,a :=

[
θ̂t,a
β̂t,a

]
= A−1

t,abt,a,
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where we reload the notations of At,a and bt,a,

At,a = λI +

t∑
s:as=a

usu
⊤
s and bt,a =

t∑
s:as=a

rs,aus. (11)

Confidence set construction. At iteration t, we construct the confidence set for ϕ̂t(xt) by

Ct
(
ϕ̂t,xt

)
:=
{
z ∈ Rd :

∥∥∥ϕ̂t(xt)− ϕ⋆(xt)
∥∥∥
2
≤ eδt

}
. (12)

The construction of the confidence set for ŵt,a will be different, as we are using the predicted value ϕ̂t(·) for linear
regression. Consider the following,

At,a

([
θ̂t,a
β̂t,a

]
−
[
θ⋆
a

β⋆
a

])
=

t∑
s:as=a

(
ϵ⊤s β

⋆
a

[
xs

ϕ̂s(xs)

])
︸ ︷︷ ︸

1

+
t∑

s:as=a

((
ϕ⋆(xs)− ϕ̂s(xs)

)⊤
β⋆
a

[
xs

ϕ̂s(xs)

])
︸ ︷︷ ︸

2

+

t∑
s:as=a

ηs

[
xs

ϕ̂s(xs)

]
︸ ︷︷ ︸

3

−λ

[
θ⋆
a

β⋆
a

]
︸ ︷︷ ︸

4

Therefore, the confidence set will be enlarged due to the error introduced by ϕ̂t(·). In the below, we derive the confidence
set. To build the confidence set, we need to bound

∥ŵt,a −w⋆
t,a∥At,a

=

∥∥∥∥∥
[
θ̂t,a
β̂t,a

]
−
[
θ⋆
a

β⋆
a

]∥∥∥∥∥
At,a

=
∥∥∥ 1 + 2 + 3 + 4

∥∥∥
A−1

t,a

Since both {ϵs}ts=1 and {ηs}ts=1 are i.i.d sub-Gaussian random variables, respectively, we can use the self-normalized
inequality to bound the corresponding terms, i.e., the followings hold with probability at least 1− 2δ,

∥ŵt,a −w⋆
t,a∥At,a

≤

√
2(L2

ϵ +R2
η) log

(
det(At,a)1/2 det(λI)−1/2

δ/2

)
+

Lu√
λ

(
t∑

s=1

eδ/ts

)
+ 2

√
λ

≤

√
2(L2

ϵ +R2
η) log

(
1 + nt(a)L2

u/λ

δ/2

)
+

Lu√
λ

(
t∑

s=1

eδ/ts

)
+ 2

√
λ

Therefore, the confidence set is

Ct,a(ŵt,a) =
{
w ∈ Rdu : ∥w − ŵt,a∥At,a ≤ ζt,a

}
, (13)

where ζt,a =
√
2(L2

ϵ +R2
η) log ((1 + nt(a)L2

u/λ)/(δ/2)) + Lu

(∑t
s=1 e

δ/t
s

)
/
√
λ+ 2

√
λ. In comparison to the original

confidence set, there is one additional term due to the generalization error introduced from ϕ̂s(·). In the next section, we
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Algorithm 2 LinUCB-(ϕ̂) (Linear UCB adapted from Wang et al. (2016) with post-serving contexts; The differences with
Algorithm 1 are highlighted in blue color.)

1: for t = 0, 1, . . . , T do
2: Receive the pre-serving context xt

3: Compute the optimistic parameters by maximizing the UCB objective

(
at, ϕ̃t(xt), w̃t

)
= argmax

(a,ϕ,wa)∈[K]×Ct−1(ϕ̂t−1,xt)×Ct−1(ŵt−1,a)

[
xt

ϕ(xt)

]⊤
wa.

4: Play the arm at and receive the realized post-serving context as zt and the real-valued reward

rt,at
=

[
xt

zt

]⊤
w⋆

at
+ ηt.

5: Compute the estimated post-serving context generating function ϕ̂t(·) using ERM.
6: Compute ŵt,a by solving Equation 10 for each a.
7: Update confidence sets Ct(ŵt,a) and Ct(ϕ̂t,xt) for each a based on Equations 12 and 5.
8: end for

will provide a regret analysis, which following from the proof of LinUCB (Li et al., 2010). We simply have the following

RT =

T∑
t=1

(
rt,a⋆

t
− rt,at

)
=

T∑
t=1

∆t ≤

√√√√T

T∑
t=1

∆2
t

≤

√√√√√T

T∑
t=1

∥∥∥ϕ̃t(xt)− ϕ⋆(xt)
∥∥∥∥∥∥β̃at

∥∥∥+ ∥∥∥∥[ xt

ϕ⋆(xt)

]∥∥∥∥
A−1

t−1,at

∥∥∥∥∥
[
θ̃at

− θat

β̃at
− βat

]∥∥∥∥∥
At−1,at

2

≤

√√√√T

(
T∑

t=1

2
∥∥∥ϕ̃t(xt)− ϕ⋆(xt)

∥∥∥2 ∥∥∥β̃at

∥∥∥2 + 2ζ2T,a

(
1 ∧

∥∥∥∥[ xt

ϕ⋆(xt)

]∥∥∥∥2
A−1

t−1,at

))

≤

√√√√T

(
T∑

t=1

2
∥∥∥ϕ̃t(xt)− ϕ⋆(xt)

∥∥∥2 ∥∥∥β̃at

∥∥∥2 + 2ζ2T,a

(
1 ∧

∥∥∥∥[ xt

ϕ⋆(xt)

]∥∥∥∥2
A−1

t−1,at

))

≤

√
T ·
(
8C0T 1−2α log2α

(
detXt

detX0

)
log2

(
T

δ

)
+ 2Kζ2T du log

(
1 +

TL2
u

λdu

))

In the next, we expand the term ζ2T ,

ζ2T ≤

√2(L2
ϵ +R2

η) log

(
1 + TL2

u/λ

δ/2

)
+

Lu

(∑T
s=1 e

δ/T
s

)
√
λ

+ 2
√
λ

2

≤ 6(L2
ϵ +R2

η) log

(
1 + TL2

u/λ

δ/2

)
+

3L2
u

λ

(
T∑

s=1

eδ/Ts

)2

+ 12λ

In the next, we bound the second term in the above equation under the learnability assumption 1,(
T∑

s=1

eδ/Ts

)2

≤ 16T 2−2α log2α
(
detXT

detX0

)
log2

(
T

δ

)
.

13



Improving Contextual Bandits via Post-serving Contexts

Therefore, naively choosing the value of λ will lead to a linear regret due to the term T 3/2−α in the equation. To minimize
the upper bound, we can choose the value of λ to be

λ = 2LuT
1−α logα

(
detXT

detX0

)
log

(
T

δ

)
.

Then, we can bound ζ2T by

ζ2T ≤ 6(L2
ϵ +R2

η) log

(
1 + TL2

u/λ

δ/2

)
+ 48LuT

1−α logα
(
detXT

detX0

)
log

(
T

δ

)
.

By plugging it in and following the simplication as in the proof of Theorem 1, we can get the regret is upper bounded by

Õ
(
T 1−αdαu + T 1−α/2

√
Kd1+α

u

)
.

The above result is summarized as the following proposition.

Proposition 1 (Regret of LinUCB-(ϕ̂)). The regret of LinUCB-(ϕ̂) in Algorithm 2 is upper bounded by
Õ
(
T 1−αdαu + T 1−α/2

√
Kd1+α

u

)
with probability at least 1 − δ, by carefully setting the regularization coefficient

λ = Θ(Lud
α
uT

1−α log (T/δ)) in Equation 1.

C. Missing Proofs
C.1. Missing Proofs in the Generalized Elliptical Potential Lemma

Lemma 1 (Generalized Elliptical Potential Lemma). Suppose (1) X0 ∈ Rd×d is any positive definite matrix; (2)
x1, . . . ,xT ∈ Rd is a sequence of vectors with bounded l2 norm maxt ∥xt∥ ≤ Lx; (3) ϵ1, . . . , ϵT ∈ Rd is a sequence of
independent (not necessarily identical) bounded zero-mean noises satisfying maxt ∥ϵt∥ ≤ Lϵ and E[ϵtϵ⊤t ] ≽ σ2

ϵI for any t;
and (4) X̃t is defined as follows:

X̃t = X0 +

t∑
s=1

(xs + ϵs)(xs + ϵs)
⊤ ∈ Rd×d.

Then, for any p ∈ [0, 1], the following inequality holds with probability at least 1− δ,

T∑
t=1

(
1 ∧ ∥xt∥2X̃−1

t−1

)p

≤ 2pT 1−p logp
(
detXT

detX0

)
+
8L2

ϵ(Lϵ + Lx)
2

σ4
ϵ

log

(
32dL2

ϵ(Lϵ + Lx)
2

δσ4
ϵ

)
(2)

Proof. Our proof follows the high level idea for proving the original EPL. However, to accommodate the noises in the data
matrix, we have to introduce new matrix concentration tools to the original (primarily algebraic) proof, and also identify the
right conditions for the argument to go through. A key lemma to our proof is the following high probability bound regarding
the noisy data matrix:

Lemma 2. Let x1, ...,xT ∈ Rd be a fixed sequence of vectors, and ϵ1, ..., ϵT ∈ Rd are independent random variables
satisfying maxt ∥xt∥2 ≤ Lx, maxt ∥ϵt∥2 ≤ Lϵ, and E[ϵtϵ⊤t ] ≽ σ2

ϵI . Then the following hold with probability at least

1− 2d exp
(

−Tσ4
ϵ

8L2
ϵ(Lϵ+Lx)2

)
,

T∑
t=1

(xt + ϵt)(xt + ϵt)
⊤ ≽

T∑
t=1

xtx
⊤
t .
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The Proof of Lemma 2 employs the Bernstein’s Inequality for matrices (Tropp et al., 2015), which is technical; for ease of
presentation, we defer its proof of Appendix C.1. By Lemma 2, we have that, for every t ∈ [T ], the following inequality
holds with probability at least 1− 2d exp

(
−tσ4

ϵ

8L2
ϵ(Lϵ+Lx)2

)
:

X̃t = X0 +

t∑
s=1

(xs + ϵs)(xs + ϵs)
⊤ ≽ X0 +

t∑
s=1

xsx
⊤
s := Xt,

under which we have
∥xt+1∥2X̃−1

t

≤ ∥xt+1∥2X−1
t

.

To prove our Lemma 1, we need to apply union bound to guarantee the above hold simultaneously for every t ≥ 1 with
high probability. Unfortunately, this turns out to not be true because when t is very small (e.g., t = 1), the above inequality
cannot hold with high probability. Therefore, to obtain high-probability guarantee by the union bound, we will have to
exclude these small t’s and apply the union bound for only the events from some t′ ∈ [T ], as follows

P
[
∀t ∈ [t′, T ], ∥xt∥2X̃−1

t−1

≤ ∥xt∥2X−1
t−1

]
≥ 1−

T−1∑
t=t′−1

2d exp

(
−tσ4

ϵ

(8L2
ϵ(Lϵ + Lx)2)

)

≥ 1−
∞∑

t=t′−1

2d exp

(
−tσ4

ϵ

(8L2
ϵ(Lϵ + Lx)2)

)

= 1− 2d

(
exp

(
− (t′ − 1)σ4

ϵ /(8L
2
ϵ(Lϵ + Lx)

2)
)

1− exp
(
− σ4

ϵ /(8L
2
ϵ(Lϵ + Lx)2)

) )
.

≥ 1− 2d× exp
(
− (t′ − 1)σ4

ϵ /(8L
2
ϵ(Lϵ + Lx)

2)
)
× 16L2

ϵ(Lϵ + Lx)
2

σ4
ϵ

,

where the last inequality uses the fact that σ4
ϵ /(L

2
ϵ(Lϵ + Lx)

2) ≤ (σϵ/Lϵ)
4 ≤ 1 and 1− e−x ≥ x/2 for any x ∈ [0, 1]. By

solving the following inequality,

exp
(
− (t′ − 1)σ4

ϵ /(8L
2
ϵ(Lϵ + Lx)

2)
)
× 16L2

ϵ(Lϵ + Lx)
2

σ4
ϵ

≤ δ

2d
,

we have,

t′ ≥ 1 +
8L2

ϵ(Lϵ + Lx)
2

σ4
ϵ

log

(
32dL2

ϵ(Lϵ + Lx)
2

δσ4
ϵ

)
Let T0 denote the ceiling of the right-hand-side of the above term. Therefore, we have the following hold with high
probability at least 1− δ:

T∑
t=1

(
1 ∧ ∥xt∥2X̃−1

t−1

)p
≤ (T0 − 1) +

T∑
t=T0

(
1 ∧ ∥xt∥2X̃−1

t−1

)p
≤ (T0 − 1) +

T∑
t=T0

(
1 ∧ ∥xt∥2X−1

t−1

)p
≤ (T0 − 1) +

T∑
t=T0

(
1 ∧ ∥xt∥2X−1

t−1

)p
In the next, we are going to bound the second term in the above equation, whose proof can be adapted from the proof of the
original elliptical potential lemma. Using the fact that for any z ∈ [0,+∞], z ∧ 1 ≤ 2 ln(1 + z), we get

T∑
t=1

1 ∧
(
∥xt∥2X−1

t−1

)p
≤

T∑
t=1

(
2 log

(
1 + ∥xt∥2X−1

t−1

))p
.
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Additionally, by definition, we have

Xt = Xt−1 + xtx
⊤
t = X

1/2
t−1

(
I +X

−1/2
t−1 xtx

⊤
t X

−1/2
t−1

)
X

1/2
t−1.

This implies the following relationship between the determinant,

detXt = det (Xt−1) det
(
I +X

−1/2
t−1 xtx

⊤
t X

−1/2
t−1

)
.

Since the only eigenvalues of a matrix of the form I + yy⊤ are 1 + ∥y∥2 and 1, we have

log
(
1 + ∥xt∥2X−1

t−1

)
= log detXt − log detXt−1.

By taking the power p for both sides and taking the sum, we have

T∑
t=1

(
log
(
1 + ∥xt∥2X−1

t−1

))p
=

T∑
t=1

(log detXt − log detXt−1)
p
.

Since p ∈ [0, 1], the function g(x) = xp is a concave function. Thus, we have

1

T

T∑
t=1

(log detXt − log detXt−1)
p ≤

(
1

T

T∑
t=1

log detXt − log detXt−1

)p

=
1

T p
logp

(
detXT

detX0

)
.

Therefore, we can conclude that

T∑
t=1

1 ∧
(
∥xt∥2X−1

t−1

)p
≤ 2pT 1−p logp

(
detXT

detX0

)
.

By combining the above results, we have the following hold with probability at least 1− δ:

T∑
t=1

(
1 ∧ ∥xt∥2X̃−1

t−1

)p
≤ T0 − 1 +

(
T∑

t=1

1 ∧ ∥xt∥2X−1
t−1

)p

≤ T0 − 1 + 2pT 1−p logp
(
detXT

detX0

)
.

Invoking

T0 − 1 ≤ 8L2
ϵ(Lϵ + Lx)

2

σ4
ϵ

log

(
32dL2

ϵ(Lϵ + Lx)
2

δσ4
ϵ

)
,

we obtained the desired inequality with probability at least 1− δ:

T∑
t=1

(
1 ∧ ∥xt∥2X̃−1

t−1

)p
≤ 2pT 1−p logp

(
detXT

detX0

)
+

8L2
ϵ(Lϵ + Lx)

2

σ4
ϵ

log

(
32dL2

ϵ(Lϵ + Lx)
2

δσ4
ϵ

)
.

Lemma 2. Let x1, ...,xT ∈ Rd be a fixed sequence of vectors, and ϵ1, ..., ϵT ∈ Rd are independent random variables
satisfying maxt ∥xt∥2 ≤ Lx, maxt ∥ϵt∥2 ≤ Lϵ, and E[ϵtϵ⊤t ] ≽ σ2

ϵI . Then the following hold with probability at least

1− 2d exp
(

−Tσ4
ϵ

8L2
ϵ(Lϵ+Lx)2

)
,

T∑
t=1

(xt + ϵt)(xt + ϵt)
⊤ ≽

T∑
t=1

xtx
⊤
t .
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Proof. We will analyze the term-wise difference, denoted as

St := (xt + ϵt)(xt + ϵt)
⊤ − xtx

⊤
t = ϵtx

⊤
t + xtϵ

⊤
t + ϵtϵ

⊤
t (14)

Moreover, since E[ϵt] = 0 for any t ∈ [T ], the expectation of St (over randomness of noise) can be lower bounded as

E[St] = E[ϵt]x
⊤
t + xtE[ϵ

⊤
t ] + E[ϵtϵ

⊤
t ] = E[ϵtϵ

⊤
t ] ≽ σ2

ϵI.

Since ∥xt∥2 ≤ Lx and ∥ϵt∥2 ≤ Lϵ, we know that St ≼ (2LϵLx + L2
ϵ)I with probability 1. Thus St is uniformly upper

bounded under the spectral-norm denoted by ∥ · ∥, or formally

∥St∥ ≤ 2LϵLx + L2
ϵ .

Consider the “centered” matrix sum ZT =
∑T

t=1

[
St − E[ϵtϵ⊤t ]

]
, with mean 0. Since the spectral-norm of St is upper

bounded by 2LϵLx + L2
ϵ , its variance V(St) =

∥∥E
[
StS

⊤
t

]∥∥
2

is upper bounded by (2LϵLx + L2
ϵ)

2. Thus, the variance of
ZT equals the variance of sum

∑T
t=1 St, which is then upper bounded by T (2LϵLx + L2

ϵ)
2. By the Bernstein’s Inequality

for random matrices (Tropp et al., 2015), we have the following high probability upper bound for the spectral norm ∥ · ∥ of
ZT :

P [∥ZT ∥ ≥ ι] ≤ 2d exp

(
−ι2/2

V(ZT ) + (2LϵLx + L2
ϵ)ι/3

)
. (15)

Since ZT is a symmetric matrix, its spectral norm upper bounds the absolute value of any eigenvalue. Thus we can lower
bound the smallest eigenvalues as follows:

P [∥ZT ∥ ≥ ι] ≥ P

[
λmin

(
T∑

t=1

St − E[ϵtϵ
⊤
t ]

)
≤ −ι

]

≥ P

[
λmin

(
T∑

t=1

St − σ2
ϵI

)
≤ −ι

]

= P

[
λmin

(
T∑

t=1

St

)
≤ Tσ2

ϵ − ι

]
.

where the second inequality is due to two facts: (1) A ≽ B implies λmin(A) ≥ λmin(B) where A =
(∑T

t=1 St − σ2
ϵI
)

and B =
(∑T

t=1 St − E[ϵtϵ⊤t ]
)

; and (2) the event λmin(A) ≤ −ι thus is included within the event λmin(B) ≤ −ι.
Consequently, we have

P

[
λmin

(
T∑

t=1

St

)
≤ Tσ2

ϵ − ι

]
≤ 2d exp

(
−ι2/2

V(ZT ) + (2LϵLx + L2
ϵ)ι/3

)
,

or equivalently,

P

[
λmin

(
T∑

t=1

St

)
≥ Tσ2

ϵ − ι

]
≥ 1− 2d exp

(
−ι2/2

V(ZT ) + (2LϵLx + L2
ϵ)ι/3

)
,

By choosing the value of ι = Tσ2
ϵ , we get

P

[
λmin

(
T∑

t=1

St

)
≥ 0

]

≥ 1− 2d exp

(
−T 2σ4

ϵ /2

V(ZT ) + (2LϵLx + L2
ϵ)Tσ

2
ϵ /3

)
≥ 1− 2d exp

(
−T 2σ4

ϵ /2

T (2LϵLx + L2
ϵ)

2 + (2LϵLx + L2
ϵ)Tσ

2
ϵ /3

)
.
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Using the fact that σϵ ≤ Lϵ, we can further simplify the above equation by

P

[
λmin

(
T∑

t=1

St

)
≥ 0

]
≥ 1− 2d exp

(
−Tσ4

ϵ

8L2
ϵ(Lϵ + Lx)2

)
.

C.2. Missing Proofs in the Regret Analysis

Theorem 1 (Regret of poLinUCB). The regret of poLinUCB in Algorithm 1 is upper bounded by Õ
(
T 1−αdαu + du

√
TK

)
with probability at least 1− δ, if T = Ω(log(1/δ)).

Proof. In the next, we prove the regret bound. For each time step t, the immediate regret is

∆t = rt,a⋆
t
− rt,at

=

〈[
xt

ϕ⋆(xt)

]
,

[
θa⋆

t
− θ⋆

at

βa⋆
t
− β⋆

at

]〉
(a)

≤

〈[
xt

ϕ̃t(xt)

]
,

[
θ̃at

− θ⋆
at

β̃at
− β⋆

at

]〉
+
〈
ϕ̃t(xt)− ϕ⋆(xt),β

⋆
at

〉
=

〈[
0

ϕ̃t(xt)− ϕ⋆(xt)

]
+

[
xt

ϕ⋆(xt)

]
,

[
θ̃at

− θ⋆
at

β̃at
− β⋆

at

]〉
+
〈
ϕ̃t(xt)− ϕ⋆(xt),β

⋆
at

〉
=
〈
ϕ̃t(xt)− ϕ⋆(xt), β̃at

〉
+

〈[
xt

ϕ⋆(xt)

]
,

[
θ̃at − θ⋆

at

β̃at − β⋆
at

]〉
(b)

≤
∥∥∥ϕ̃t(xt)− ϕ⋆(xt)

∥∥∥ · ∥∥∥β̃at

∥∥∥+〈[ xt

ϕ⋆(xt)

]
,

[
θ̃at

− θ⋆
at

β̃at
− β⋆

at

]〉
(c)

≤
∥∥∥ϕ̃t(xt)− ϕ⋆(xt)

∥∥∥ · ∥∥∥β̃at

∥∥∥+ ∥∥∥∥[ xt

ϕ⋆(xt)

]∥∥∥∥
A−1

t−1,at

∥∥∥∥∥
[
θ̃at

− θ⋆
at

β̃at
− β⋆

at

]∥∥∥∥∥
At−1,at

.

where the inequality (a) is due to the definition of UCB, and (b) and (c) are obtained using the Cauchy-Schwarz inequality.
Therefore, the cumulative regret can be further upper bounded by

RT =

T∑
t=1

∆t ≤

√√√√T

T∑
t=1

∆2
t

≤

√√√√√T

T∑
t=1

∥∥∥ϕ̃t(xt)− ϕ⋆(xt)
∥∥∥∥∥∥β̃at

∥∥∥+ ∥∥∥∥[ xt

ϕ⋆(xt)

]∥∥∥∥
A−1

t−1,at

∥∥∥∥∥
[
θ̃at − θat

β̃at
− βat

]∥∥∥∥∥
At−1,at

2

≤

√√√√T

(
T∑

t=1

2
∥∥∥ϕ̃t(xt)− ϕ⋆(xt)

∥∥∥2 ∥∥∥β̃at

∥∥∥2 + 2ζ2T

(
1 ∧

∥∥∥∥[ xt

ϕ⋆(xt)

]∥∥∥∥2
A−1

t−1,at

))

≤

√√√√T

(
T∑

t=1

2
∥∥∥ϕ̃t(xt)− ϕ⋆(xt)

∥∥∥2 ∥∥∥β̃at

∥∥∥2 + 2ζ2T

(
1 ∧

∥∥∥∥[ xt

ϕ⋆(xt)

]∥∥∥∥2
A−1

t−1,at

))
In the next, we bound each term separately. Firstly, we have the following hold with probability at least 1− δ by using the
union bound,

T∑
t=1

2
∥∥∥ϕ̃t(xt)− ϕ⋆(xt)

∥∥∥2 · ∥∥∥β̃at

∥∥∥2 ≤ 8

T∑
t=1

(
e
δ/T
t

)2
.
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In the next, to bound the remaining term, we use the result from Lemma 1. We first group the sums based the arm,

T∑
t=1

1 ∧
∥∥∥∥[ xt

ϕ⋆(xt)

]∥∥∥∥2
A−1

t−1,at

=
∑
a∈A

∑
t∈[T ]:at=a

1 ∧
∥∥∥∥[ xt

ϕ⋆(xt)

]∥∥∥∥2
A−1

t−1,a

(16)

By denoting nT (a) as the number of times that arm a is pulled, we can divide the arms into two groups,

G0 := {a ∈ A : nT (a) = Ω(log(1/δ))} and G1 := A \ G0.

Then, we can further decompose the r.h.s term of Equation 16 based on if the corresponding arm is in G0 or G1. Then, by
applying Lemma 1, we have the following holds, with probability at least 1− δ,

∑
a∈A

∑
t∈[T ]:at=a

1 ∧
∥∥∥∥[ xt

ϕ⋆(xt)

]∥∥∥∥2
A−1

t−1,a

=
∑
a∈G0

∑
t∈[T ]:at=a

1 ∧
∥∥∥∥[ xt

ϕ⋆(xt)

]∥∥∥∥2
A−1

t−1,a

+
∑
a∈G1

∑
t∈[T ]:at=a

1 ∧
∥∥∥∥[ xt

ϕ⋆(xt)

]∥∥∥∥2
A−1

t−1,a

≤2Kdu log

(
1 +

TL2
u

λdu

)
+

8KL2
ϵ(Lϵ + Lx)

2

σ4
ϵ

log

(
32KduL

2
ϵ(Lϵ + Lx)

2

δσ4
ϵ

)
.

where the last inequality is due to Lemma 1 and apply the union bound on the K arms. To bound the remainder term, since
α ∈ [0, 1/2], by the learnability assumption as stated in Assumption 1 and Lemma 1, we have

T∑
t=1

(
e
δ/t
t

)2
≤

T∑
t=1

C2
0 ·
(
1 ∧ ∥x∥2

X−1
t−1

)2α
· log2

(
tT

δ

)
≤ 4C2

0T
1−2α log2α

(
detXT

detX0

)
log2

(
T

δ

)
≤ 4C2

0T
1−2αd2αu log2α

(
TL2

u/d+ λ

λ

)
log2

(
T

δ

)

Therefore, the total regret bound is bounded by the following term with probability at least 1− 2δ,√
T ·

(
8C0T 1−2α log2α

(
detXT

detX0

)
log2

(
T

δ

)
+Kζ2T

(
du log

(
1 +

TL2
u

λdu

)
+

48L4
ϵL2

u

σ4
ϵ

log

(
192KduL4

ϵL2
u

δσ4
ϵ

)))

By hiding the logarithmic terms, we can further simplify it to be

Õ
(
T 1−αdαu + du

√
TK

)

C.3. Missing Proofs in Generalizations

Proposition 2. The regret of poLinUCB in Algorithm 1 for action-dependent contexts is upper bounded by
Õ
(
T 1−αdαu

√
K + du

√
TK

)
with probability at least 1− δ if T = Ω(log(1/δ)).

Proof. Our proof follows from the proof of Theorem 1. The immediate regret at each time step t is

∆t = rt,a⋆
t
− rt,at

(17)
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Recall that the definition of a⋆t ,

a⋆t := argmax
a∈A

⟨θ⋆
a,xt,a⟩+ ⟨β⋆

a, ϕ
⋆
a(xt,a)⟩. (18)

To bound the immediate regret, we have

∆t = ⟨θ⋆
a⋆
t
,xt,a⋆

t
⟩+ ⟨β⋆

a⋆
t
, ϕ⋆

a⋆
t
(xt,a⋆

t
)⟩ − ⟨θ⋆

at
,xt,at

⟩ − ⟨β⋆
at
, ϕ⋆

at
(xt,at

)⟩. (19)

By the definition of UCB, we further have

∆t ≤ ⟨θ̃t,at
,xt,at

⟩+ ⟨β̃t,at
, ϕ̃⋆

t,at
(xt,at

)⟩ − ⟨θ⋆
at
,xt,at

⟩ − ⟨β⋆
at
, ϕ⋆

at
(xt,at

)⟩. (20)

By rearranging the terms, we get

∆t ≤ ⟨θ̃t,at − θ⋆
at
,xt,at⟩+ ⟨β̃t,at − β⋆

at
, ϕ⋆

at
(xt,at)⟩︸ ︷︷ ︸

1

+ ⟨β̃t,at , ϕ̃t,at(xt,at)− ϕ⋆
at
(xt,at)⟩︸ ︷︷ ︸

2

(21)

Bounding the first term 1 is the same as the proof in Theorem 1, while bounding the second term 2 will be slightly
different, as we now have K such functions of ϕ⋆

a(·) for a ∈ A to learn. By denoting the error for each estimate of ϕ⋆
a(·) at

iteration t as eδt,a. Therefore, the contribution from the second term to the total regret can be bounded by

T∑
t=1

(
e
δ/t
t,at

)2
=
∑
a∈A

∑
t∈[T ]:at=a

(
e
t/δ
t,a

)2
(22)

≤ 4KC0T
1−2α log2α

(
detXT

detX0

)
log2

(
T

δ

)
. (23)

Hence, by following the remaining steps in the proof of Theorem 1, we can conclude that the regret is upper bounded by

Õ
(
T 1−αdαu

√
K + du

√
TK

)
, (24)

where the only difference is the additional
√
K appeared in the first term.

Proposition 3. The regret of poLinUCB in Algorithm 1 for the above setting is upper bounded by Õ
(
T 1−αdαu + du

√
T
)

with probability at least 1− δ if T = Ω(log(1/δ)).

Proof. This proof also follows from the proof of Theorem 1. The immediate regret at each time step t is

∆t = rt,x⋆
t
− rt,xt (25)

Recall that the definition of x⋆
t ,

x⋆
t := argmax

x∈Dt

⟨θ⋆,x⟩+ ⟨β⋆, ϕ⋆(x)⟩. (26)

To bound the immediate regret, we have

∆t = ⟨θ⋆,x⋆
t ⟩+ ⟨β⋆, ϕ⋆(x⋆

t )⟩ − ⟨θ⋆,xt⟩ − ⟨β⋆, ϕ⋆(xt)⟩ (27)

By the definition of UCB, we further have

∆t ≤ ⟨θ̃t,xt⟩+ ⟨β̃t, ϕ̃
⋆
t (xt)⟩ − ⟨θ⋆,xt⟩ − ⟨β⋆, ϕ⋆(xt)⟩. (28)

By rearranging the terms, we get

∆t ≤ ⟨θ̃t − θ⋆,xt⟩+ ⟨β̃t − β⋆, ϕ⋆(xt)⟩︸ ︷︷ ︸
1

+ ⟨β̃t, ϕ̃t(xt)− ϕ⋆(xt)⟩︸ ︷︷ ︸
2

(29)

Since we only need to fit a single θ⋆, β⋆ and ϕ⋆(·). We thus have the following bound for the total regret,

Õ
(
T 1−αdαu + du

√
T
)
. (30)
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D. Technical Lemmas
Lemma 3 (Confidence Ellipsoid, based on Theorem 2 of (Abbasi-Yadkori et al., 2011)). Let w⋆ ∈ Rd, V0 = λI , λ > 0.
For any t ≥ 0, let u1, · · · ,ut ∈ Rd, define rt = ⟨ut,w

⋆⟩+ηt where ηt is Rη-sub-Gaussian and assume that ∥w⋆∥2 ≤ Lw;
let Vt = V0 +

∑t
s=1 usu

⊤
s and ŵt be the corresponding regularised least-square estimator. Then, for any δ > 0 and t ≥ 0,

with probability at least 1− δ, w⋆ lies in the set:

Ct =

w ∈ Rd : ∥ŵt −w∥Vt
≤

√
λLw +Rη

√√√√2 log

(
det (Vt)

1/2
det(λI)−1/2

δ

) . (31)

Furthermore, if for all t ≥ 1, ∥ut∥ ≤ Lu, then for any δ > 0 and t ≥ 0, with probability at least 1− δ, w⋆ lies in the set:

Ct =

{
w ∈ Rd : ∥ŵt −w∥Vt

≤
√
λLw +Rη

√
d log

(
1 + tL2

u/λ

δ

)}
. (32)

Lemma 4 (Bernstein’s Inequality for Matrices, Theorem 6.1.1 of (Tropp et al., 2015)). Let X1, · · · ,Xn ∈ Rd1×d2 be
independent and centered random matrices. Assume that for each i ∈ [n], Xi is uniformly bounded, that is:

E [Xi] = 0 and ∥Xi∥ ≤ B, (33)

where ∥ · ∥ denotes the spectral-norm distance here. Introduce the sum

Z =

n∑
i=1

Xi, (34)

and let V(Z) denote the matrix variance statistics of the sum Z:

V(Z) = max {∥E [ZZ∗] ∥, ∥E [Z∗Z] ∥} (35)

= max

{∥∥∥∥∥
n∑

i=1

XiX
∗
i

∥∥∥∥∥ ,
∥∥∥∥∥

n∑
i=1

X∗
i Xi

∥∥∥∥∥
}
, (36)

where the asterisk ∗ denotes the conjugate transpose operation. Then, for every ϵ ≥ 0, we have,

P
(
∥Z∥ ≥ ϵ

)
≤ (d1 + d2) · exp

(
−ϵ2/2

V(Z) +Bϵ/3

)
. (37)
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