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Abstract

In reinforcement learning (RL), a reward function
is often assumed at the outset of a policy opti-
mization procedure. Learning in such a fixed re-
ward paradigm in RL can neglect important policy
optimization considerations, such as state space
coverage and safety. Moreover, it can fail to en-
compass broader impacts in terms of social wel-
fare, sustainability, or market stability, potentially
leading to undesirable emergent behavior and po-
tentially misaligned policy. To mathematically
encapsulate the problem of aligning RL policy
optimization with such externalities, we consider
a bilevel optimization problem and connect it to
a principal-agent framework, where the principal
specifies the broader goals and constraints of the
system at the upper level and the agent solves
a Markov Decision Process (MDP) at the lower
level. The upper-level deals with learning a suit-
able reward parametrization corresponding to the
broader goals and the lower-level deals with learn-
ing the policy for the agent. We propose Principal
driven Policy Alignment via Bilevel RL (PPA-
BRL), which efficiently aligns the policy of the
agent with the principal’s goals. We explicitly
analyzed the dependence of the principal’s trajec-
tory on the lower-level policy, prove the conver-
gence of PPA-BRL to the stationary point of the
problem. We illuminate the merits of this frame-
work in view of alignment with several examples
spanning energy-efficient manipulation tasks, so-
cial welfare-based tax design, and cost-effective
robotic navigation.
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1. Introduction
The increasing complexity and widespread use of artificial
agents highlight the critical need to ensure that their
performance aligns with broader objectives such as social
welfare and economic impacts, which are referred to by
economists as externalities (Rahwan, 2018). This has
given rise to the field of AI alignment (Liu et al., 2022),
which focuses on aligning agent behavior with societal
goals and values. We study this problem in the context
of reinforcement learning (RL) (Sutton & Barto, 1998),
which may be mathematically posed as a Markov Decision
Problem (Puterman, 2014). This framework gained traction
for its ability to solve games (Mnih et al., 2013; Silver et al.,
2017), personalized recommendation systems (Steck et al.,
2021), various continuous control tasks (Ng et al., 1999;
Lillicrap et al., 2015), and develop strategies in financial
markets (Ardon et al., 2021). The question of how to align
an RL agent to broader goals may be decomposed into two
major questions:
(i) How can one align the behavior of learning agents with
broader objectives?
(ii) Does alignment compromise the performance of
learning agents?

To address (i), a litany of approaches have been studied:
inverse reinforcement learning (Ziebart et al., 2008; Brown
et al., 2019; Arora & Doshi, 2020) and imitation learn-
ing (Ho & Ermon, 2016; Kang et al., 2018; Ghasemipour
et al., 2019; Xiao et al., 2019) employ expert demonstra-
tions to learn a policy or reward function (Torabi et al.,
2018; Ouyang et al., 2022). Offline approaches leverage
large-scale prior-collected data to learn behaviors deemed
appropriate by an expert (Yang et al., 2023; Levine et al.,
2020; Yin et al., 2022; Chen et al., 2022). However, acquir-
ing a substantial amount of human feedback or well-aligned
demonstrations can be expensive or infeasible (Bai et al.,
2022; Chen et al., 2023a; Wolf et al., 2023), especially
when dealing with diverse (Jabbari et al., 2017), personal-
ized, or competing goals set by individuals, organizations,
or governments (Bai et al., 2022; Chen et al., 2023a; Liu
et al., 2022; Sun et al., 2023). Therefore, instead, we adopt
an approach where one seeks to directly design the data-
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generating mechanism according to some external utility
function. Doing so introduces a dependency on the question
(ii), as alignment upends the standard training mechanism
for learning agents. In particular, evaluating an alignment
objective is contingent upon the agent’s performance over a
time horizon through trajectories generated by the agent’s
policy. This entanglement naturally leads to a variant of
bilevel optimization.

To date, problems of this type have mostly been studied
through the lens of bilevel optimization (Bracken & McGill,
1973). Bilevel optimization considers a setup where the
outer-level objective is a function of decision variables and
the optimizer at the inner-level in both deterministic (Hansen
et al., 1992; Shi et al., 2005) or a probabilistic sense (Chen
et al., 2021). However, these works primarily do not allow
either stage to be defined by an MDP.

Distinct lines of effort exist from game theory and eco-
nomics in terms of mechanism design (Myerson, 1989; Hur-
wicz, 2003; Maskin, 2008), Stackleberg games (Von Stack-
elberg, 2010), and contract theory (Green & Stokey, 1983;
Eisenhardt, 1989; Stiglitz, 1989) that have a bearing on our
technical approach. Closer to this work is recent intersec-
tions of MDPs and algorithmic Stackleberg solvers, which
impose special information structures such as linear MDPs
(Zhong et al., 2021) or oracle access to transition models
(Goktas et al., 2022). Most similar to our work are those
that develop implicit function-theorem based gradient play
(Fiez et al., 2020; Vu et al.); however, these techniques are
experimentally-based. Worth mentioning is principal-agent
problem in contract theory, which admits a Stacklberg for-
mulation (Zhu et al., 2022; Chen et al., 2023b) in terms of
repeatedly interacting bandits.

A more extensive discussion of these research threads is
available in Appendix 8. The main takeaway is that no for-
mulation exists in which the inner-stage is a parameterized
policy optimization problem in an MDP, and the outer-stage
is an expected-value objective over the distribution under-
lying trajectories defined by an RL policy. This setting,
to our knowledge, is most appropriate for formalizing the
alignment of RL agents to externalities (Rahwan, 2018) and
emergent behavior (Teo et al., 2013).

This generality introduces technical impediments not found
in either prior RL methods or bilevel programming: (i) the
outer objective is parameterized by the inner-stage’s opti-
mal policy, which must be numerically approximated; (ii)
to solve the aforementioned numerical approximation, the
local Karush-Kuhn-Tucker (KKT) conditions of the outer
stage exhibit dependence on Jacobians and Hessians that
are interrelated with variables at the inner-stage (Hong et al.,
2020; Khanduri et al., 2021; Li et al., 2022); and (iii) the
sampling distribution for the expectation at the outer-stage
depends on trajectories generated from product measure as-

sociated with the transition dynamics conditioned on fixed
policy at the inner-stage. We develop an algorithmic frame-
work that addresses these issues and therefore enables one to
design RL agents that are aligned with externalities. There-
fore, our main contributions are to:

• formulate the agent policy alignment problem as a
bilevel optimization problem where the outer objective
centers on reward design through policy evaluation
over the horizon, and the inner level pertains to policy
alignment with the designed reward via policy opti-
mization in an MDP;

• by analyzing local KKT points using differentiation
and the Implicit function theorem, we derive an iter-
ative procedure to jointly solve for the design param-
eters at the outer level and policy parameters at the
inner level in this framework. This procedure, known
as Principal-driven Policy Alignment via Bilevel RL
(PPA-BRL);

• establish the proposed methodology converges to a lo-
cal KKT point of the problem. The main challenge
lies in deriving and dealing with the expectation of
the gradient of the outer objective, which depends on
the policy of the inner level. This results in an inter-
esting notion of score function with respect to outer
parameters crucial for design and alignment.

2. Policy Alignment as Bilevel Formulation
Standard policy optimization. Let us start by consid-
ering the Markov Decision Process (MDP) tuple M :=
{S,A, γ,P, r} (Puterman, 2014), which is a tuple consist-
ing of a state space S, action space A, transition dynamics
P, discount factor γ ∈ (0, 1), and reward r : S × A → R.
Starting from a given state s ∈ S , an agent selects an action
a and transitions to another s′ ∼ P(· | s, a). We hypothe-
size that the agent follows a stochastic stationary policy that
maps states to distributions over actions πθ : S → P(A),
which is parameterized by a parameter vector θ ∈ Rd. We
can write the standard finite horizon policy optimization
problem as

max
θ
Vs(θ) := E

[
H−1∑
h=0

γhr(sh, ah) |, s0 = s

]
, (1)

where the expectation is with respect to the stochasticity in
the policy πθ and the transition dynamics P. In (1), we used
notation Vs(θ) for value function in state s to emphasize the
dependence on parameters θ. We note that the formulation
in (1) utilizes a reward function r (fixed a priori), and we
learn a policy corresponding to reward function r. But as
detailed in the introduction, policy learning with a fixed
reward does not allow one to tether the training process
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to an external objective such as (Ni & Paul, 2019), social
welfare (Balcan et al., 2014), or market stability (Buehler
et al., 2019).

Proposed formulation. To enable this capability, we for-
mulate a bilevel optimization problem where the inner level
is a Markov Decision Process (MDP) and The outer level
is an expected utility maximization, whose distribution de-
pends upon the transition model and policy associated with
trajectories at the inner level:

max
ν

G(ν, θ∗(ν)) (2)

s.t. θ∗(ν) := argmax
θ

E

[
Hℓ−1∑
h=0

γhrν(sh, ah) |, s0 = s

]
,

where ah ∼ πθ(ah|sh) and the inner-level goal is to max-
imize the Hℓ horizon γ-discounted cumulative return of
rewards rν(s, a), i.e., the value function.

Inner Objective. As previously mentioned, the interre-
lationship of these levels is intended to formalize that a
designer, called a principal in contract theory (Zhu et al.,
2022; Zhao et al., 2023) , specifies the incentive structure
associated with the reward function of an RL agent at the
inner-level. To be more precise, note that the reward rν(s, a)
in (2) is additionally a parametric function of the designer’s
parameters ν ∈ Rn, in contrast to the standard MDP setting
(1). Hence, we can also write the inner-level optimization
problem in (2) as

max
θ
Vs(ν, θ) := E

[
Hℓ−1∑
h=0

γhrν(sh, ah) |, s0 = s

]
, (3)

where ah ∼ πθ(ah|sh) and the expectation is with respect
to the stochasticity in the policy πθ and the transition dynam-
ics P. In contrast to value function in (1), the value function
in (3) is an implicit function of the designer’s parameters
ν which controls the reward function rν . For the example
of robotic navigation, rν(s, a) is a function of the distance
to a goal location. Further, to make the policy parameter θ
dependence on the reward parameter ν clear, we write θ(ν)
subsequently. In this work, we restrict focus to the case that
the optimizer θ∗(ν) at the inner-level is unique, which man-
dates that one parameterize the policy in a tabular (Agarwal
et al., 2020; Bhandari & Russo, 2021) or softmax fashion
(Mei et al., 2020a); otherwise, at most one can hope for with
a policy gradient iteration is to obtain an approximate local
extrema (Zhang et al., 2020). We defer a more technical
discussion of this aspect to Section 4. For the upper-level
objective in (2), we aim to maximize an objective function
G(ν, θ∗(ν)), which depends on the design parameters ν and
a cumulative return of the RL agent evaluated at a given pol-
icy, which is an implicit function of policy parameters θ∗(ν).
The outer objective in (2) addresses the limitations of (1)

encompasses the goal of aligning the reward function with
objectives such as energy usage (Ni & Paul, 2019), social
welfare (Balcan et al., 2014), market stability (Buehler et al.,
2019), or other external factors not under the direct control
of an RL agent. The parameters ν under the designer’s con-
trol define the incentive structure for the behavior of an RL
agent, and in that way, exhibits parallel with mechanism
design (Lyu et al., 2022a) and contract theory (Zhu et al.,
2022).

Outer objective. To be specific, we consider a utility at the
outer level of the form

G(ν, θ∗(ν)) = D(πθ∗(ν)) + Z(ν), (4)

which is comprised of two terms: a quantifier U(πθ∗(ν)) of
the merit of design parameters ν ∈ Rn, whereas the second
term Z(ν) represents, e.g., a regularizer or prior on the
distribution over trajectories P(τ ; θ∗(ν)). More specifically,
the explicit mathematical form of U(πθ∗(ν)) decides the
quality of policy πθ∗(ν) by collecting trajectories (denoted
by τ ), and via associating a designer’s reward U(τ), for
each trajectory under policy πθ∗(ν) given by

D(πθ∗(ν)) = EP (τ ;θ∗(ν))[U(τ)] =
∑
τ

U(τ) · P(τ ; θ∗(ν)),

(5)

where P(τ ; θ∗(ν)) denotes the probability of trajectory τ .
Subsequently, we employ the shorthand notation Eπθ∗(ν)

[·]
to denote the expectation with respect to the distribution un-
derlying trajectory τ :

∏Hu

h=0 P(sh+1 | sh, ah)πθ∗(ν)(·|sh),
where Hu is the length of upper level trajectory collected at
the lower level optimal policy. The explicit form of such an
objective, i.e., reward specifications for the designer U , is
provided in detailed examples in the following Subsection
2.1.

As we will see in the next section, developing an itera-
tive solver to (2) exhibits some unique technical challenges
not found in prior art on bilevel programming (Ghadimi &
Wang, 2018a; Akhtar et al., 2022). Before shifting focus to
do so, we present some representative examples of (2).

2.1. Motivating Examples

Example 1: Energy efficient and sustainable design for
robotic manipulation. Consider a robotic manipulation
task where the objective of the agent is to learn an opti-
mal policy to transport components from a fixed position
to a target position ν := (x, y). On the other hand, the de-
signer’s objective is to select the work-bench position ν to
minimize the energy consumption of the robotic arm during
the transportation task. Hence, it naturally boils down to the
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following bilevel problem as

max
ν:=(x,y)

EP (τ ;θ∗(ν))

[
Hu∑
h=1

−ahwh | ah ∼ πθ∗(ν)(·|sh)

]
(6)

s.t. θ∗(ν) := argmax
θ

E

[
Hℓ−1∑
h=0

γhrν(sh, ah) |, s0 = s

]
,

where ah ∼ πθ(ah|sh), Eπθ∗(ν)
denotes the expectation

with respect to the trajectories collected by the lower-level
optimal policy πθ∗(ν). In (6), action ah denotes the angular
acceleration of the robotic arm, the state is represented by
sh = (αh, wh), αt is the discretized angle, and wh angular
velocity of the robotic arm. we define the transitions as
(αt+1, wt+1) = (αh +wh, wh + ah). The reward of the in-
ner objective rν(sh, ah) = −λ1∥sh − ν∥2 − λ2∥wh∥2, i.e.,
reward increases as the arm moves closer to the workbench
with a controlled angular velocity. The outer objective fo-
cuses on minimizing the energy emission during transport
and is thus entangled with the trajectories generated under
the optimal policy obtained via the lower-level.

Example 2: Social welfare aligned tax design for house-
holds. Consider the problem of tax design for individual
households while remaining attuned to social welfare, mo-
tivated by (Hill et al., 2021). From the household’s per-
spective, each household seeks to maximize its own utility
uh based on the number of working hours, consumption
of goods, and net worth. Let us denote the accumulated
asset as state sh. At each time step h, the household agent
selects an action ah = (nh, ci,h), ah ∼ πθ(ah|sh), where
nh is the number of hours worked, and ci,h is the con-
sumption of good i at a pre-tax price of pi, and θ denotes
the policy parameter. We denote f(sh) as the reward for
the accumulative asset sh, updated at each time step by
sh+1 = sh + (1 − x)wnh −

∑M
i=1 ci,h and ν = (x, yi)

is the income tax rate and consumption tax rate for good
i. Here we note that x is a uniform tax across all house-
holds, whereas yi is a household-specific tax rate. Then the
household agent’s utility at time step h is given by the equa-

tion uh = f(sh) − γn2h +
∏M

i=1

(
ci,h

pi(1+yi)

)νi

, where the
product term corresponds to Cobb-Douglas function (Roth
et al., 2016). In contrast, the objective of the regulatory
body or government (upper-level) is to maximize the social
welfare vt by adjusting the tax rates ν based on the optimal
policy of the household agent (lower level). Hence, the
outer objective representing the social welfare is defined as
vh = g(sh) +

∑M
i=1

ci,h
1+yi

+ ψ ln
( ∏M

i=1 ci,tyi∏M
i=1(1+yi)

+ wxnh
)

,
where g(·) is the reward for the accumulative asset, ψ is a
positive constant, and w is the wage rate. The household
agent follows a policy that maximizes its discounted cumu-
lative reward, while the social planner aims to maximize the
discounted total social welfare by tuning the tax rates x and

yi. Thus, the bilevel formulation is given by

max
ν

EP (τ ;θ∗(ν))

[
Hu−1∑
h=0

vν(sh, ah)

]
(7)

s.t. θ∗(ν) := argmax
θ

E

[
Hℓ−1∑
h=0

γhuν(sh, ah)|, s0 = s

]
.

where ah ∼ πθ(ah|sh), γ is the discount rate, and θ∗(ν)
represents the optimal inner policy of the household agent,
which maximizes its expected cumulative return over a time
horizon Hℓ.

3. Algorithmic Policy Alignment with
Externalities via Bilevel RL

To solve the bilevel problem in (2), we seek to develop
stochastic optimization algorithm similar to (Ghadimi &
Wang, 2018a) which requires to evaluate the gradients of
the upper and lower level objective. To do so, we begin by
deriving the gradient of the outer objective∇νG[ν, θ

∗(ν)]
from (4) with respect to design parameter ν given by

∇νG[ν, θ
∗(ν)] = ∇ν

∑
τ

U(τ) · P(τ ; θ∗(ν)) +∇νZ(ν)

= Eτ [U(τ) · ∇ν log(P(τ ; θ∗(ν)))] +∇νZ(ν)

= EP (τ ;θ∗(ν))

[
U(τ) ·

Hu−1∑
h=0

∇ν log πθ∗(ν)(ah|sh)
]

(8)

+∇νZ(ν),

where we have used the log-trick and standard rule of ex-
pectation to get the final expression in (8), similar to the
standard derivation of the policy gradient formula (Agar-
wal et al., 2020), and the score function method in general
(Williams, 1992; Sutton et al., 1999). We emphasize two as-
pects: (a) the score function term∇ν log πθ∗(ν)(a|s) in (8),
which denotes the gradient of the optimal policy with respect
to the design parameter ν; and (b) the expectation is with re-
spect to the trajectory distribution P(τ ; θ∗(ν)) generated un-
der policy at the inner-level πθ∗(ν) given by P(τ ; θ∗(ν)) :=
ρ(s0)

∏Hℓ−1
h=0 πθ∗(ν)(ah|sh)P(s′h | πθ∗(ν)(sh, ah).

True to our knowledge, this is the first time this coupled
score function is appearing in the RL training, which cap-
tures the change of optimal policy with respect to the reward
function’s design parameters. The term ∇ν log πθ∗(ν)(a|s)
is crucial for our setting, as the designer (principal agent,
such as a regulatory body or central planner) at the upper-
level can directly control the policy learning by modify-
ing the reward parameters. However, the estimation of
∇ν log πθ∗(ν)(ah|sh) is nontrivial as it depends on the so-
lution of the lower-level problem in (2), and therefore re-
quires the evaluation of hypergradient ∇νθ

∗(ν). To see
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that, let us employ the shorthand notation fh(θ∗(ν)) :=
log πθ∗(ν)(ah|sh), we can rewrite the gradient as

∇νfh(θ
∗(ν)) = ∇νθ

∗(ν)T∇θfh(θ
∗(ν)). (9)

From the first order optimality condition for the lower level
objective, it holds that

∇θVs(ν, θ
∗(ν)) = 0, (10)

which is the gradient of lower-level objective with respect
to parameter θ evaluated at the optimal θ∗(ν). Now, differ-
entiating again with respect to ν on both sides of (10), we
obtain

∇2
ν,θVs(ν, θ

∗(ν)) +∇νθ
∗(ν)∇2

θVs(ν, θ
∗(ν)) = 0. (11)

The above expression would imply that we can write the
final expression for the gradient in (9) as

∇νfh(θ
∗(ν)) = −∇2

v,θVs(ν, θ
∗(ν))∇2

θVs(ν, θ
∗(ν))−1

(12)

∇θfh(θ
∗(ν)).

We substitute (12) into (8) to write the final expression for
the outer objective in (2):

∇νG[ν, θ
∗(ν)] =EP (τ ;θ∗(ν))

[
U(τ) ·

Hu−1∑
h=0

[−∇2
v,θVs(ν, θ

∗(ν))

(13)

· ∇2
θVs(ν, θ

∗(ν))−1∇θfh(θ
∗(ν))]

]
+∇νZ(ν).

From the gradient expression in (13), we note that there
are three intertwined technical challenges for solving the
reward alignment problem efficiently:

(i) requirement of access to θ∗(ν)

(ii) evaluating Jacobians and Hessians of the lower-level
objectives

(iii) unbiasedly sampling trajectories from P(τ ; θ∗(ν)) =
ρ(s0)

∏Hℓ−1
h=0 πθ∗(ν)(ah|sh)P(s′h | πθ∗(ν)(sh, ah) de-

pendent on optimal policy πθ∗(ν)

To provide intuition, let us temporarily hypothesize that an
oracle provides us access to θ∗(ν) for given ν. In this case,
we can write a first-order gradient iteration to solve the joint
policy learning and alignment problem (2), which is given
as Algorithm 2. We note that from the standard analysis of
gradient descent, we know that the update in Algorithm 2
would converge to stationary point (for non-convex G and

Algorithm 1 Principal driven Policy Alignment via Bilevel
RL (PPA-BRL)

1: Input: Reward parametrization ν0 policy initialization
θ0, upper and lower-level step sizes αu > 0, αℓ > 0
respectively

2: for all t = 0, 1, 2, ..., T − 1 do
3: for all k = 0, 2, ...,K − 1 do
4: Sample N trajectories τ ∼ P (τ ; θK(νt)) and esti-

mate policy gradient∇θVs(νt, θ
K(νt)) from equa-

tion (27)
5: Update the policy gradient parameter as :

θk+1(νt) = θk(νt)− αℓ∇θVs(νt, θ
k(νt))

6: end for
7: Update the reward parameterization in the upper-

level from equation (26) as :

νt+1 ← νt − αu∇̃νG(νt, θ
K(νt))

8: end for
9: Output: νT , θK(νT )

optimal objective for convex G). Once, we have learned
the optimal reward parameter νT , we can utilize that to
obtain optimal policy θ∗(νT ) aligned with the upper-level
objectives. But as mentioned earlier, there are impediments
to implementing Algorithm 2 in practice. Therefore, we
develop a stochastic algorithm without requiring access to
θ∗(ν) oracle next.
Remark 3.1. We have only presented the analytical forms
of the first and second-order information required to obtain
a numerical solver for problem in (2). However, in prac-
tice, these update directions are unavailable due to their
dependence on distributions P(τ ; θ∗(ν)) and MDP transi-
tion model P. Therefore, only sampled estimates of the
expressions in (26)-(29) are available.

4. Convergence Analysis
In this section, we analyze the convergence behavior of
Algorithm 1. Since the outer objective G(ν, θ∗(ν)) is non-
convex with respect to ν, we consider ∇νG(ν, θ

∗(ν)) as
our convergence criteria and show its convergence to a first-
order stationary point, as well as the convergence of θK(ν)
to θ∗(ν). Taken together, these constitute a local KKT
point (Boyd & Vandenberghe, 2004)[Ch. 5] Without loss of
generality, our convergence analysis is for the minimization
(upper and lower level objectives). We proceed then by
introducing some technical conditions required for our main
results.
Assumption 1 (Lipschitz gradient of outer objective). For
any ν ∈ Rn, the gradient of the outer objective is Lipschitz
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continuous w.r.t to second argument with parameter Lg , i.e.,
we may write

∥∇νG(ν, θ
∗(ν))−∇νG(ν, θ

K(ν))∥ ≤ Lg∥θ∗(ν)− θK(ν)∥.
(14)

Assumption 2. For all s ∈ S and a ∈ A, reward function is
bounded as r(s, a) ≤ R for all (s, a) and Lipschitz w.r.t to
ν, i.e., |rν1(s, a)−rν2(s, a)| ≤ Lr∥ν1−ν2∥; , and bounded
∀(s, a) i.e rν(s, a) ≤ R.
Assumption 3. The policy πθ is Lipschitz with respect to pa-
rameter θ, which implies ∥πθ1(·|s)− πθ2(·|s)∥ ≤ Lπ∥θ1 −
θ2∥ for all θ1 ̸= θ2. The score function ∇θ log πθ(a|s) is
bounded ∥∇θ log πθ(a|s)∥ ≤ B and Lipschitz:

∥∇θ log πθ1(·|s)−∇θ log πθ2(·|s)∥ ≤ L1∥θ1 − θ2∥
(15)

∀θ1 ̸= θ2. Further, the policy parameterization induces
score function whose Hessian is Lipschitz:

∥∇2
θ log πθ1(·|s)−∇2

θ log πθ2(·|s)∥ ≤ L2∥θ1 − θ2∥
(16)

∀θ1 ̸= θ2.
Assumption 4. Vs(ν, θ) satisfies the Polyak-Lojasiewicz
(PL) condition with respect to θ with parameter µ. We
denote {λ(∇2

θVs(ν, θ))j}dj=1 as the eigenvalues of Hes-
sian matrix ∇2

θVs(ν, θ). Although, Vs(ν, θ) is non-convex
in θ, but follows the restriction on the eigenvalues as
λ(∇2

θVs(ν, θ)) ∈ [−l̂,−µ̂] ∪ [µ̂, l̂].

Next, we introduce a few key technical lemmas regarding
the iterates generated by Algorithm 1. We begin by quanti-
fying the distributional drift associated with the transition
model under θK(νt) as compared with θ∗(νt) at the lower
level, which results in a transient effect at the outer level.

Lemma 4.1. Under Assumptions 1 - 4, for trajectory τ =
{sh, ah}Hu

h=1, it holds that

Df (P (τ ; θ
∗(ν)), P (τ ; θK(ν))) ≤ HuL2

2
∥θ∗(ν)− θK(ν)∥,

(17)

where Df is the f-divergence between distributions and Lπ

is the Lipschitz parameter (cf. Assum. 3).

The proof of Lemma 4.1 in provided in Appendix 11.1.
Next, we establish some error bound conditions on key
second-order terms that appear in equations (26)-(29) when
we substitute θ∗(νt) by θK(νt).

Lemma 4.2 (Value function related upper bounds). Under
Assumptions 1 - 4, it holds that

(i) The second order Jacobian term∇2
ν,θVs(νt, θ

K(νt)) is
bounded as ∥∇2

ν,θVs(νt, θ
K(νt))∥ ≤ H2

ℓLrB, where

Hℓ is the horizon length for the lower level [cf. (2)],
Lr is the reward Lipschitz parameter [cf. Assumption
2], and B is the score function bound [cf. Assumption
3].

(ii) The Hessian of the value function is Lipschitz with
parameter as

∥∇2
θVs(ν, θ

∗(ν))−∇2
θVs(ν, θ

K(ν))∥ (18)

≤ L′∥θ∗(ν)− θK(ν)∥,

where, L′ = Lf1χ1
Hℓ

2 L2 + Lf1 and Lf1 = L2H
2
ℓR.

Here, Hℓ is the horizon length at the lower level, χ1 is
a constant defined in (64), R is the maximum reward
(cf. Assumption 2), and L2 is the Lipschitz parameter
of the Hessian of the policy defined in Assumption 3.

(iii) The second order mixed jacobian term
∇2

ν,θVs(ν, θ
K(ν)) is Lipschitz continuous w.r.t θ

i.e

∥∇2
ν,θVs(ν, θ

∗(νt))−∇2
ν,θVs(νt, θ

K(ν))∥ (19)

≤ L′′∥θ∗(ν)− θK(ν)∥

where, L′′ = Lf3χ2
Hℓ

2 L2 +Lf3 and Lf3 = LrL1H
2
ℓ .

Here, χ2 is a constant defined in equation (72), and
other constants are as defined in statement (ii).

The proof of Lemma 4.2 is in Appendix 11.2. To prove this
result, we start by considering the value function expres-
sion, and evaluating it’s gradient, Hessian, and Jacobians.
After expanding each of them, we separate the reward and
policy-related terms and then utilize the aforementioned
assumptions to upper bound them, respectively.
Lemma 4.3. Let us define the update direction associated
with the gradient in (13) as

ϕ1(τ) :=U(τ) ·
Hu∑
t=0

[−∇2
v,θVs(ν, θ

∗(ν)) (20)

· ∇2
θVs(ν, θ

∗(ν))−1∇θfh(θ
∗(ν))],

and ϕ2(τ) :=U(τ) ·
Hu∑
t=0

[−∇2
v,θVs(ν, θ

K(ν)) (21)

· ∇2
θVs(ν, θ

K(ν))−1∇θfh(θ
K(ν))].

Under Assumptions 1 - 4, it holds that

∥Eτ∼P (τ ;θK(ν))[ϕ1(τ)− ϕ2(τ)]∥ ≤ H2
uũγ1∥θ∗(ν)− θK(ν)∥,

(22)

where γ1 := κL1+
Lν,θL

′

l2π
+L′′

lπ
. Here, ũ is the upper bound

of utility U(τ) defined in (5), lπ, L1 are policy-related Lips-
chitz parameters (cf. Assumption 3), L′ and L′′ as defined
in Lemma 4.2, and κ mixed condition number defined in
equation (92) and Lν,θ upper-bound of the norm of second
order mixed jacobian term, defined in equation (90)
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Figure 1. (a) describes the convergence of the upper-level optimization variable with the designer’s alignment levels. Alignments 1, 2, 3,
and 4 used λ = 1, 10, 15, 30, respectively. It is evident that our Algorithm aligns efficiently with the total outer level utility i.e considering
both the aspects of outer and inner utilities for the designer. Figure 1(b) shows that when weightage on the cost-utility term in the outer
objective is less, the cost naturally increases with outer iterations (shown as a negative reward). Figure 1(c) shows that for alignment
configurations with low weights on the cost-utility part of the outer objective, inner rewards are achieved is more and vice-versa otherwise.
Overall it demonstrates that our algorithm efficiently aligns to the broader utilities

The proof of Lemma 4.3 is in Appendix 12.6.

Lemma 4.4. Under Assumptions 1-(4), the lower level iter-
ates of Algorithm 1 satisfies

∥θK(νt)− θ∗(ν)∥2 ≤
ηKL6

µ
Z, (23)

where, Z := maxν ∥θ0 − θ∗(ν)∥2, η := 1 − α3, α3 =
αℓ(1 − αℓL6

2 )µ2 , L6 = L5
HL2

2 + L5, L5 = H2
l RL1, µ

is the PL constant, and K denotes the number of lower-
level iterations, and policy gradient step-size satisfies αℓ <
2/min(HℓL2, µ), with µ as the PL constant (Assumption
4).

The proof of Lemma 4.4 is provided in Appendix 12.7. The
proof relies on the assumption that the Value function satis-
fies a Polyak Łojasiewicz (PL) condition under appropriate
policy parametrization.
Theorem 1. Under Assumptions 1-(4), for the proposed
Algorithm 1, it holds that

1

T

T∑
t=1

∥∇νG(νt, θ
∗(νt))∥2 ≤

G0 −G∗

δ1T
+

ηδ2L6Z

Tδ1µ(1− η)
(24)

where G0 := G(ν0, θ
∗(ν0)) and G∗ denotes the global op-

timum of the outer objective, δ1 = αu

(
1− 1

2c1
− Lgαu

)
and δ2 = αu

(
c1
2 + Lgαu

)
, c1 is a positive constant defined

in eqn. (33), and the step-size range of satisfies αu < 1/Lg ,
with Lg as in Assumption 1 and αℓ as stated in Lemma 4.4.

In Theorem 1, we note that we achieve a final rate of
O(1/T ), which matches with bilevel optimization for non-
convex outer objective (Ghadimi & Wang, 2018a) when the
lower-level satisfies PL condition.

5. Experimental Evaluations
To demonstrate our algorithm’s performance, we use a sim-
ple grid-world environment where the agent’s objective is to
reach a goal at position (Gx, Gy). The agent starts at (0, 0)
and receives a reward rν based on its speed in reaching the
goal. The goal’s position affects an outer utility/cost Rutil,
which incurs a cost of −

√
(Tx −Gx)2 + (Ty −Gy)2 as it

moves away from the target position (Tx, Ty). We formulate
this as a bilevel optimization problem with an overall cost
Router = Rinner + λRutil, where λ is a scalar weighting
term. Smaller λ values prioritize inner utility, causing the
goal to move closer to the agent’s start position. Increasing
λ gives more weight to outer utility, bringing the goal closer
to the target position. Fig.1a shows goal position changes
under different alignments, while Fig.1b and Fig.1c depict
the convergence of outer and inner utility to the alignments.
Alignments 1, 2, 3, and 4 correspond to λ = 1, 10, 15, 30
respectively. Lower λ values lead to a goal closer to the
agent and higher inner utility, while higher λ values keep the
goal near the target with higher outer utility. The ablation
study validates the algorithm’s alignment performance.

6. Conclusions and Future Work
Potentially misaligned agents pose a severe risk to society;
thus making AI alignment at the forefront of research of
the current times (Liu et al., 2022). However, an efficient
solution to such an alignment problem depends upon two
major factors 1) precise Evaluation of the agent’s policy and
2) subsequent reward design, and failure to adhere to any
of these can cause potentially misaligned agents or agents
with compromised performance. To deal with the above
entanglement, we formulate the alignment problem in a
bilevel optimization framework and characterized a precise

7
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evaluation by approximately estimating the gradient of the
optimal policy w.r.t to the reward parametrization, which
is crucial for alignment. Finally, through our design and
analysis of the algorithm, we show convergence guarantees
to the broader goals with a rateO(1/T ), which is a first step
towards provable policy alignment research.
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Appendix

7. Notations
We collectively describe the notations used in this work in Table 1.

Table 1:

Notations Details

S,A State space, action space

(s, a) State-action pair

P(s′|s, a) Transition kernel

rν(s, a) Reward function parameterized by designer’s parameters ν ∈ Rn

πθ(ν)(·|s) Policy parameterized by θ(ν) ∈ Rd for design parameters ν

Vs(ν, θ(ν)) Inner objective - Value function for state s at outer parameter ν and policy
parameter θ(ν)

G(ν, θ∗(ν)) Outer objective

8. Related Work
Bilevel Optimization. Multi-stage optimization has a long-history in optimization and operations research, both for
deterministic (Bertsimas & Caramanis, 2010) and stochastic objectives (Pflug & Pichler, 2014). In general, these problems
exhibit NP-hardness if the objectives are general non-convex functions. Therefore, much work in this area restricts focus to
classes of problems, such as affine (Bertsimas & Caramanis, 2010; Bertsimas et al., 2010). From both the mathematical
optimization community (Bracken & McGill, 1973) and algorithmic game theory (Von Stackelberg, 2010), extensive interest
has been given to specifically two-stage problems. A non-exhaustive list contains the following works (Ghadimi & Wang,
2018b; Yang et al., 2021; Khanduri et al., 2021; Li et al., 2022; Ji & Liang, 2022; Huang et al., 2022). Predominately, one
these works do not consider that either stage is a MDP, and therefore while some of the algorithmic strategies are potentially
generalizable to the RL agent alignment problem, they are not directly comparable to the problem studied here.

Algorithms for Stackleberg Games. Algorithmic methods for Sackleberg games are a distinct line of inquiry that develops
methods to reach the Stackleberg-Nash equilibrium of a game, which have received significant attention in recent years.
Beginning with the static Stackleberg game setting, conditions for gradient play to achieve local equilibria have been
established in (Fiez et al., 2019). Follow on work studied conditions for gradient play to converge without convexity, but
does not allow for MDP/trajectory dependence of objective functions at either stage (Maheshwari et al., 2023). On the other
hand, the access to information structures have gradually been relaxed to allow bandit feedback (Bai et al., 2021) and linear
MDPs (Zhong et al., 2021). Value iteration schemes have been proposed to achieve Stackleberg-Nash equilibria as well
(Goktas et al., 2022), although it is unclear how to generalize them to handle general policy parameterization in a scalable
manner. Most similar to our work are those that develop implicit function-theorem based gradient play (Fiez et al., 2020; Vu
et al.); however, there are no performance certificates for these approaches.

Mechanism Design. In this line of research, one studies the interrelationship between the incentives of an individual
economic actor and their macro-level behavior at the level of a social welfare objective. This literature can be traced back to
(Myerson, 1989; Hurwicz, 2003; Maskin, 2008), and typically poses the problem as one that does not involve sequential
interactions. More recently, efforts to cast the evolution of the outer-stage which quantifies social welfare or ethnical
considerations as a sequential process, i.e., an MDP, have been considered (Tang, 2017; Hu et al., 2018). In these works,
agents’ behavior is treated as fixed and determining of the state transition dynamics, which gives rise to a distinct subclass
of policy optimization problems (Lyu et al., 2022a;b).

Principal-Agent Problem. Contract theory also formalizes the notion of an agent’s interaction with a rule setter (Green &
Stokey, 1983; Eisenhardt, 1989; Stiglitz, 1989). The agent is the individual who may choose to enroll in a contract, and the
principal is the creator of the rules or incentive structure that determines the incentive structure for the agent’s decision.
Formalizing the question of how to design a contract and agent behavior through MDP machinery and Stackleberg games

12
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Algorithm 2 Policy Alignment with Reward Design (conceptual)

1: Input: Reward parametrization ν0, optimal policy parameter θ∗(ν0) (oracle), upper-level step size α > 0
2: for all t = 0, 1, 2, ..., T − 1 do
3: Update the parameter νt as

νt+1 = νt − α∇νG[νt, θ
∗(νt)] (25)

where∇νG[ν, θ
∗(νt)] is defined in (13).

4: end for
5: Output: νT

has been the subject of recent efforts, especially (Zhu et al., 2022; Chen et al., 2023b).

RL with Preferences. Revealed preferences is a concept in economics that states that humans in many cases do not
know what they prefer until they are exposed to examples (Caplin & Dean, 2015). This idea gained traction as a it
provided a substantive basis for querying humans and elucidating feedback on decision-making problems with metrics
whose quantification is not obvious, such as trustworthiness or fairness. Efforts to incorporate pairwise comparison into
reinforcement learning, especially as a mechanism to incorporate preference information, has been heavily studied in recent
years – see (Wirth et al., 2017) for a survey. A non-exhaustive list of works along these lines is (Isbell et al., 2001; Fürnkranz
et al., 2012; Roth et al., 2016; Hill et al., 2021; Wirth et al., 2017; Zhu et al., 2023; Xu et al., 2020; Saha et al., 2023).

Inverse RL and Behavioral Cloning. Implicitly contained in the RL with preferences framework is the assumption that
humans should design a reward function to drive an agent towards the correct behavior through its policy optimization process.
This question of reward design has also been studied through an alternative lens in which one provides demonstrations
or trajectories, and seeks to fit a reward function to represent this information succinctly. This class of problems, broadly
referred to as inverse RL (Ng et al., 2000), has a long history in experimentally driven RL research – see (Arora & Doshi,
2021) for a survey. Rather than design a reward function as an intermediary between demonstrations and policy optimization,
behavioral cloning directly seeks to mimic the behavior of demonstration information (Torabi et al., 2018; Wen et al., 2020).
In doing so, it is able to sidestep some of the questions of whether a reward function can be well-posed for a given collection
of trajectories.

9. Upper & Lower Level Gradient Computations
Upper-level Gradient Estimation To estimate the gradient of the upper-level objective in equation (8), we require
information about θ∗(ν) (issue (i)) which is not available in general unless the inner-level objective has a closed-form
solution. Hence, we approximate θ∗(νt) with θK(νt) i.e., running K-step policy gradient steps at the lower-level as

∇̃νG(νt, θ
K(νt)) = EP (τ ;θK(νt))

[
U(τ) ·

Hu−1∑
t=0

[M̃K(νt)∇θfh(θ
K(νt))]

]
+∇νZ(ν). (26)

where M̃K(νt) = −∇2
v,θVs(νt, θ

K(νt))∇2
θVs(νt, θ

K(νt))
−1. This approximate evaluation of (13) with a current policy

estimate θK(νt) in lieu of θ∗(νt) constitutes our effort to address issue (iii).

Lower-level objective gradient, Jacobian, and Hessian estimation: Next, we derive the exact gradients for the inner-level
objective and, subsequently the Hessian and mixed hessian terms for our algorithmic description (issue (ii)). Let us first
write down the gradient of lower-level objectives using the Policy Gradient Theorem (Williams, 1992; Sutton et al., 1999) as

∇θVs(νt, θ
K(νt)) = EP (τ ;θK(νt))

[
Hℓ−1∑
h=0

γhrνt
(sh, ah)

Hℓ−1∑
j=0

∇θ log πθK(νt)(aj |sj)

], (27)

13
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where Hℓ is the horizon or the episode length. Similarly, the Hessian of the inner objective is:

∇2
θVs(νt, θ

K(νt)) = EP (τ ;θK(νt))

[
Hℓ−1∑
h=0

γhrνt
(sh, ah)

Hℓ−1∑
j=0

∇2
θ log πθK(νt)(aj |sj)

], (28)

Finally, we can write the mixed second-order Jacobian matrix as

∇2
ν,θVs(νt, θ

K(νt))=EP (τ ;θK(νt))

[
Hℓ−1∑
h=0

γh∇νrνt
(sh, ah)

(Hℓ−1∑
j=0

[∇θ log πθK(νt)(aj |sj)]
T

)]
. (29)

Now, utilizing the expressions in (26)-(29), we summarize the proposed steps in Algorithm 1. We note that we denote
the number of inner-level iterates by K for better exposition. We will choose it as a function of outer iterations t in the
convergence analysis next. Without loss of generality, we have written the algorithm updates as if we are minimizing the
upper and lower level objectives. Before shifting to analyzing the convergence behavior of Algorithm 1, we close with a
remark.

10. Proof of Theorem 1
Proof. We begin by the smoothness assumption in the upper-level objective (cf. Assumption 14), which implies that

G[νt+1, θ
∗(νt+1)] ≤ G(νt, θ∗(νt)) + ⟨∇νG(νt, θ

∗(νt)), νt+1 − νt⟩+
Lg

2
∥νt+1 − νt∥2. (30)

From the update of outer parameter νt+1 (cf. (26)), we holds that

G(νt+1, θ
∗(νt+1)) ≤G(νt, θ∗(νt)) + ⟨∇νG(νt, θ

∗(νt)),−αu∇̃νG(νt, θ
K(νt))⟩ (31)

+
Lgα

2
u

2
∥∇̃νG(νt, θ

K(νt))∥2.

We add subtract the original gradient∇νG(νt, θ
∗(νt)) [cf. (13)] in (31) as follows

G(νt+1, θ
∗(νt+1)) ≤G(νt, θ∗(νt)) + ⟨∇νG(νt, θ

∗(νt)),−αu∇νG(νt, θ
∗(νt))⟩ (32)

+ αu⟨∇νG(νt, θ
∗(νt)),∇νG(νt, θ

∗(νt))− ∇̃νG(νt, θ
K(νt))⟩

+
Lgα

2
u

2
∥∇νG(νt, θ

∗(νt)) + ∇̃νG(νt, θ
K(νt))−∇νG(νt, θ

∗(νt))∥2

=G(νt, θ
∗(νt))− αu∥∇νG(νt, θ

∗(νt))∥2 (33)

+ αu⟨∇νG(νt, θ
∗(νt)),∇νG(νt, θ

∗(νt))− ∇̃νG(νt, θ
K(νt))⟩

+
Lgα

2
u

2
∥∇νG(νt, θ

∗(νt)) + ∇̃νG(νt, θ
K(νt))−∇νG(νt, θ

∗(νt))∥2.

Using Peter-Paul inequality for the third term on the right hand side of (33), we get

G(νt+1, θ
∗(νt+1)) ≤G(νt, θ∗(νt))− αu∥∇νG(νt, θ

∗(νt))∥2 +
αu

2c1
∥∇νG(νt, θ

∗(νt))∥2 (34)

+
αuc1
2
∥∇νG(νt, θ

∗(νt))− ∇̃νG(νt, θ
K(νt))∥2

+
Lgα

2
u

2
∥∇νG(νt, θ

∗(νt)) + ∇̃νG(νt, θ
K(νt))−∇νG(νt, θ

∗(νt))∥2.
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where c1 ≥ 0. Next, after grouping the terms, we get

G(νt+1, θ
∗(νt+1)) ≤G(νt, θ∗(νt))− αu

(
1− 1

2c1

)
∥∇νG(νt, θ

∗(νt))∥2

+
αuc1
2
∥∇νG(νt, θ

∗(νt))− ∇̃νG(νt, θ
K(νt))∥2

+ Lgα
2
u∥∇νG(νt, θ

∗(νt))∥2 + Lgα
2
u∥∇̃νG(νt, θ

K(νt))−∇νG(νt, θ
∗(νt))∥2

=G(νt, θ
∗(νt))− αu

(
1− 1

2c1
− Lgαu

)
∥∇νG(νt, θ

∗(νt))∥2

+ αu

(c1
2

+ Lgαu

)
∥∇νG(νt, θ

∗(νt))− ∇̃νG(νt, θ
K(νt))∥2, (35)

where we use the inequality ∥a + b∥2 ≤ 2∥a∥2 + 2∥b∥2, followed by algebraic operations to get the final expression of
equation (35). Next, we analyze the term ∥∇νG(νt, θ

∗(νt)) − ∇̃νG(νt, θ
K(νt))∥2 from equation (35). Let us start by

considering the explicit expressions of∇νG(ν, θ
∗(ν)) and ∇̃νG(νt, θ

K(νt)) in equations (13) and (26) as

∇νG(ν, θ
∗(ν))− ∇̃νG(ν, θ

K(ν)) = Eτ∼P (τ ;θ∗(ν))[ϕ1(τ)]− Eτ∼P (τ ;θK(ν))[ϕ2(τ)], (36)

where we define

ϕ1(τ) =U(τ) ·
Hu∑
t=0

[−∇2
v,θVs(ν, θ

∗(ν))∇2
θVs(ν, θ

∗(ν))−1∇θfh(θ
∗(ν))], (37)

and ϕ2(τ) =U(τ) ·
Hu∑
t=0

[−∇2
v,θVs(ν, θ

K(ν))∇2
θVs(ν, θ

K(ν))−1∇θfh(θ
K(ν))]. (38)

Now, we expand the terms in (36) by adding subtracting the term Eτ∼P (τ ;θK(ν))[ϕ1(τ)] in the right hand side as follows

∇νG(ν, θ
∗(ν))− ∇̃νG(ν, θ

K(ν)) =Eτ∼P (τ ;θ∗(ν))[ϕ1(τ)]− Eτ∼P (τ ;θK(ν))[ϕ1(τ)] (39)

+ Eτ∼P (τ ;θK(ν))[ϕ1(τ)]− Eτ∼P (τ ;θK(ν))[ϕ2(τ)]

=Eτ∼P (τ ;θ∗(ν))[ϕ1(τ)]− Eτ∼P (τ ;θK(ν))[ϕ1(τ)]

+ Eτ∼P (τ ;θK(ν))[ϕ1(τ)− ϕ2(τ)]. (40)

We note that the first term on the right-hand side of (40) Eτ∼P (τ ;θ∗(ν))[ϕ1(τ)] − Eτ∼P (τ ;θK(ν))[ϕ1(τ)] ≤
supϕ Eτ∼P (τ ;θ∗(ν))[ϕ1(τ)] − Eτ∼P (τ ;θK(ν))[ϕ1(τ)]. This boils down to the standard definition of Integral Probability
Metric(IPM) which, under suitable assumption on the function ϕ can be upper-bounded by Wasserstein and Total Variation
distance. Specifically, we show that function ϕ is Lipschitz with some constant. The second term on the right-hand side of
(40) is the expected difference between the two functions. Hence, we can write (40) as

∇νG(ν, θ
∗(ν))− ∇̃νG(ν, θ

K(ν)) =Df (P (τ ; θ
∗(ν)), P (τ ; θK(ν)))

+ Eτ∼P (τ ;θK(ν))[ϕ1(τ)− ϕ2(τ)], (41)

where Df denotes the f-divergence between two distributions. Taking the norm on both sides and from the statements of
Lemma 4.1 and Lemma 4.3, we can write

∥∇νG(ν, θ
∗(ν))− ∇̃νG(ν, θ

K(ν))∥2 ≤
(
H2

uL
2
2

2
+ 2H4

uũ
2γ21

)
∥θ∗(ν)− θK(ν)∥2. (42)

Utilizing this bound in (35), we get

G(νt+1,θ
∗(νt+1))−G(νt, θ∗(νt))

≤ −αu

(
1− 1

2c1
− Lgαu

)
∥∇νG(νt, θ

∗(νt))∥2

+ αu

(c1
2

+ Lgαu

)(H2
uL

2
2

2
+ 2H4

uũ
2γ21

)
∥θ∗(ν)− θK(ν)∥2, (43)
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where we write the final expression for the convergence analysis from equation (35) and for simplicity of notations, let’s
assume δ1 = αu

(
1− 1

2c1
− Lgαu

)
and δ2 = αu

(
c1
2 + Lgαu

) (H2
uL

2
2

2 + 2H4
uũ

2γ21

)
, which leads to the simplified version

of the equation (43)

G(νt+1, θ
∗(νt+1))−G(νt, θ∗(νt)) ≤ −δ1∥∇νG(νt, θ

∗(νt))∥2 + δ2∥θ∗(νt)− θK(νt)∥2. (44)

From the statement of Lemma 4.4, we can upper bound the above expression as

G(νt+1, θ
∗(νt+1))−G(νt, θ∗(νt)) ≤ −δ1∥∇νG(νt, θ

∗(νt))∥2 + δ2
ηKL6

µ
Z, (45)

where we know η ∈ (0, 1). Next, we select K = t+ 1 to obtain

G(νt+1, θ
∗(νt+1))−G(νt, θ∗(νt)) ≤ −δ1∥∇νG(νt, θ

∗(νt))∥2 + δ2
ηt+1L6

µ
Z. (46)

Taking the summation over t = 0 to T − 1 on both sides, we get

G(νT , θ
∗(νT )−G(ν0, θ∗(ν0)) ≤ −δ1

T−1∑
t=0

∥∇νG(νt, θ
∗(νt))∥2 +

δ2L6Z

µ

T−1∑
t=0

ηt+1 (47)

After rearranging the terms, we get

T−1∑
t=0

∥∇νG(νt, θ
∗(νt))∥2 ≤

G(ν0, θ
∗(ν0))−G(νT , θ∗(νT )

δ1
+
ηδ2L6Z

δ1µ

T−1∑
t=0

ηt

≤ G(ν0, θ
∗(ν0))−G(νT , θ∗(νT )

δ1
+

ηδ2L6Z

δ1µ(1− η)
. (48)

Let us denote G0 := G(ν0, θ
∗(ν0)) and upper bound −G(νT , θ∗(νT ) ≤ −G∗ where G∗ denotes the global optimal value

of the outer objective. After dividing both sides in (48) by T , we get

1

T

T−1∑
t=0

∥∇νG(νt, θ
∗(νt))∥2 ≤

G0 −G∗

δ1T
+

ηδ2L6Z

Tδ1µ(1− η)
. (49)

11. Proof of All Lemmas 4.1-4.4
11.1. Proof of Lemma 4.1

Proof. The probability distribution of the trajectory τ = {sh, ah}Hh=1 is given by

P (τ ; θ∗(ν)) = ρ(s0)

H∏
h=1

πθ∗(ν)(ah|sh)P(sh+1|sh, ah). (50)

Similarly, we can derive an equivalent expression for the probability of trajectory induced by the policy πθK(ν) by replacing
θ∗(ν) with θK(ν). Here, P(sh+1|sh, ah) is the transition probability which remains the same for both and ρ(s0) is the initial
state distribution. Next, the f-divergence between the two distributions Df (P (τ ; θ

∗(ν)), P (τ ; θK(ν))) can be written as

Df (P (τ ; θ
∗(ν)), P (τ ; θK(ν))) ≤ Df (P (τ ; θ

∗(ν)), P (τ ;β))︸ ︷︷ ︸
I

+Df (P (τ ;β), P (τ ; θ
K(ν)))︸ ︷︷ ︸

II

, (51)

which holds by triangle inequality (of f-divergences). P (τ ;β) represents the trajectory probability induced by another
hybrid policy πβ(·|s) which executes the action based on the policy πθK(ν)(·|s) for the first time-step and then follows the
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policy πθ∗(ν)(·|s) for subsequent timesteps. Now, we focus on term I in (51), we get

Df (P (τ ;θ
∗(ν)), P (τ ;β))

=
∑
τ

P (τ ;β)f

(
P (τ ; θ∗(ν))

P (τ ;β)

)
(52)

=
∑
τ

P (τ ;β))f

(
ρ(s0)πθ∗(ν)(a1|s0)P(s2|s1, a1)

∏H
h=2 πθ∗(ν)(ah|sh)P(sh+1|sh, ah)

ρ(s0)πθK(ν)(a1|s0)P(s2|s1, a1)
∏H

h=2 πθ∗(ν)(ah|sh)P(sh+1|sh, ah)

)

=
∑
τ

P (τ ;β))f

(
πθ∗(ν)(a1|s0)
πθK(ν)(a1|s0)

)
,

where first we expand upon the definition of the trajectory distribution induced by both policies and get the final expression
of the equation (52). By expanding the term P (τ ;β) in (52), we obtain

Df (P (τ ; θ
∗(ν)), P (τ ;β)) =

∑
s0

ρ(s0)
∑
a1

πθK(ν)(a1|s0)f
( πθ∗(ν)(a1|s1)
πθK(ν)(a1|s0)

)∑
s1

P(s1|s0, a1) · · ·

=
∑
s

ρ(s)
∑
a

πθK(ν)(a|s)f
( πθ∗(ν)(a|s)
πθK(ν)(a|s)

)
= Eρ(s)

∑
a

πθK(ν)(a|s)f
( πθ∗(ν)(a|s)
πθK(ν)(a|s)

)
= Eρ(s)[Df (πθ∗(ν)(a|s), πθK(ν)(a|s))], (53)

where, in the first equation we expand upon the sum over all trajectories with the occupancy distribution over states and
actions, and replacing with f-divergence, we get the final expression.

Next, we expand similarly for the term II in (51) and expand as

Df (P (τ ;β), P (τ ; θ
K(ν)))

=
∑
τ

P (τ ; θK(ν)))f

(
P (τ ;β)

P (τ ; θK(ν))

)

=
∑
τ

P (τ ; θK(ν)))f

(
ρ(s0)πθK(ν)(a1|s0)P(s2|s1, a1)

∏H
h=2 πθ∗(ν)(ah|sh)P(sh+1|sh, ah)

ρ0(s0)πθK(ν)(a1|s0)P(s2|s1, a1)
∏H

h=2 πθK(ν)(ah|sh)P(sh+1|sh, ah)

)

=
∑
s0

ρ(s0)
∑
a1

πθK(ν)(a1|s0)
∑
s1

P(s1|s0, a0) · · · f

(∏H
h=2 πθ∗(ν)(ah|sh)P(sh+1|sh, ah)∏H
h=2 πθK(ν)(ah|sh)P(sh+1|sh, ah)

)

=
∑
s0

ρ(s0)
∑
a1

πθK(ν)(a1|s0)
∑
τ1

P (τ1; θ
K(ν),

P (τ1; θ
∗(ν)

P (τ1; θK(ν))

=
∑
s0

ρ(s0)
∑
a1

πθK(ν)(a1|s0)Df (P (τ1; θ
∗(ν), P (τ1; θ

K(ν)), (54)

where we expand the trajectory distribution induced by the policies and subsequently express as the ratio of the probability
of trajectories wrt τ1, we get the final expression. Now, we expand upon the f-divergence of the trajectory τ1 distribution as

Df (P (τ ;β), P (τ ; θ
K(ν))) =

∑
s0

ρ(s0)
∑
a1

πθK(ν)(a1|s0)Df (P (τ1; θ
∗(ν), P (τ1; θ

K(ν)) (55)

≤
∑
s0

ρ(s0)
∑
a1

πθK(ν)(a1|s0)
(
Df (P (τ1; θ

∗(ν)), P (τ1;β))

+Df (P (τ1;β), P (τ1; θ
K(ν)))

)
,
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where using the triangle inequality and get back the similar form with which we had started in equation (51) similar to term
I and term II. Here, similarly continuing this expansion, we finally get

Df (P (τ ; θ
∗(ν)), P (τ ; θK(ν))) ≤

H−1∑
h=0

Es∼ρP
θK (ν)

(s)Df (πθ∗(ν)(a|s), πθK(ν)(a|s))

≤ HEs∼ρθK (ν)(s)
Df (πθ∗(ν)(a|s), πθK(ν)(a|s))

≤ H
∑
s

ρθK(ν)(s)Df (πθ∗(ν)(a|s), πθK(ν)(a|s))

≤ HDf (πθ∗(ν)(a
′|s′), πθK(ν)(a

′|s′)), (56)

where, we upper bound the first equation by the total number of timesteps or horizon length H of the trajectory and
subsequently upper-bound the divergence by the state (s, a) pair for which the Df (πθ∗(ν)(a|s), πθK(ν)(a|s)) is maximum
and is given as (s′, a′). Next, in (56), by considering the total variation as the f-divergence and expanding using definition
with countable measures to obtain

Df (P (τ ; θ
∗(ν)), P (τ ; θK(ν))) ≤ HDTV (πθ∗(ν)(a|s′), πθK(ν)(a|s′))

≤ H

2
∥πθ∗(ν)(a|s)− πθK(ν)(a|s)∥1

≤ HL2

2
∥θ∗(ν)− θK(ν)∥, (57)

where, we use the Lipschitz assumption (cf. Assumption 3) on the policy parameter to get the final expression of equation
(57). We note that the result holds for any general horizon length H .

11.2. Proof of Lemma 4.2

11.2.1. PROOF OF LEMMA 4.2 STATEMENT (I)

Proof. We start with the definition from (29)

∇2
ν,θVs(νt, θ

K(νt)) =
∑
τ

P (τ ; θK(νt))

[
Hℓ∑
h=0

γh · ∇νrνt
(sh, ah) ·

 Hℓ∑
j=0

∇θ log πθK(νt)(aj |sj)

T ]

≤

[
Hℓ∑
h=0

γh · ∇νrνt
(s′h, a

′
h) ·

 Hℓ∑
j=0

∇θ log πθK(νt)(a
′
j |s′j)

T ]∑
τ

P (τ ; θK(νt))

=

[
Hℓ∑
h=0

γh · ∇νrνt(s
′
h, a

′
h) ·

 Hℓ∑
j=0

∇θ log πθK(νt)(a
′
j |s′j)

T ]
, (58)

where τ ′ represents the trajectory for which the inner product term is maximum and thereby upper-bounding with that leads
to expression in equation (58) Next we upper-bound the norm of the ∥∇2

ν,θVs(νt, θ
K(νt))∥ as

∥∇2
ν,θVs(νt, θ

K(νt))∥ ≤

∥∥∥∥∥
Hℓ∑
h=0

γh · ∇νrνt
(s′h, a

′
h) ·

 Hℓ∑
j=0

∇θ log πθK(νt)(a
′
j |s′j)

T ∥∥∥∥∥
≤

∥∥∥∥∥
Hℓ∑
h=0

γh · ∇νrνt
(s′h, a

′
h)

∥∥∥∥∥ ·
∥∥∥∥∥

Hℓ∑
j=0

∇θ log πθK(νt)(a
′
j |s′j)

∥∥∥∥∥
≤ H2

ℓLrB, (59)

where we apply the Cauchy-Schwarz inequality to get the equation in the second line. We apply triangle inequality with
Assumptions 2 and 3 to get the final bound for the mixed hessian term.
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11.2.2. PROOF OF LEMMA 4.2 STATEMENT (II)

Proof. We start by considering the term

∇2
θVs(ν, θ

∗(ν))−∇2
θVs(ν, θ

K(ν)) = EP (τ ;θ∗(ν))f1(τ)− EP (τ ;θK(ν))f2(τ), (60)

where we define

f1(τ) =

Hℓ∑
h=0

γh−1 · rνt(sh, ah) ·

 Hℓ∑
j=0

∇2
θ log πθ∗(ν)(aj |sj)

 (61)

f2(τ) =

Hℓ∑
h=0

γh−1 · rνt(sk, ak) ·

 Hℓ∑
j=0

∇2
θ log πθK(ν)(aj |sj)

 . (62)

Subsequently, we write the norm of the equation (60) into 2 parts as

∥∇2
θVs(ν, θ

∗(ν))−∇2
θVs(ν, θ

K(ν))∥
= ∥EP (τ ;θ∗(ν))f1(τ)− EP (τ ;θK(ν))f1(τ) + EP (τ ;θK(ν))f1(τ)− EP (τ ;θK(ν))f2(τ)∥
≤ ∥T1∥+ ∥T2∥, (63)

where, T1 = EP (τ ;θ∗(ν))f1(τ)−EP (τ ;θK(ν))f1(τ) and T2 = EP (τ ;θK(ν))f1(τ)−EP (τ ;θK(ν))f2(τ). We next, upper-bound
the individual terms to get the final Lispchitz constant.

First, we focus on the first term of inequality i.e T1 given as

T1 = EP (τ ;θ∗(ν))f1(τ)− EP (τ ;θK(ν))f1(τ) (64)

≤ sup
f1

[EP (τ ;θ∗(ν))f1(τ)− EP (τ ;θK(ν))f1(τ)]

≤ Lf1χ1dTV (P (τ ; θ
∗(ν)), P (τ ; θK(ν)))

≤ Lf1χ1
Hℓ

2
L2∥θ∗(ν)− θK(ν)∥,

where we convert the inequality first to a standard Integral Probability Metric form by taking the supremum and then dividing
and multiplying with the Lipschitz constant Lf1 from equation (78), we get the final expression in terms of Total variation
where χ1 is the constant. Then, we upper-bounded the total variation using the results from equation (57) to get the final
expression.

Now, we proceed to the second term of the equation T2 and derive an upper bound as

T2 =
∑
τ

P (τ ; θK(ν))(f1(τ)− f2(τ)) (65)

≤ f1(τ ′)− f2(τ ′)

=

Hℓ∑
h=0

γh−1 · rνt
(sh, ah) ·

 Hℓ∑
j=0

(∇2
θ log πθ∗(ν)(aj |sj)−∇2

θ log πθK(ν)(aj |sj))


,
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where we consider the trajectory τ ′ in the sum with the maximum value and upper bound by that to get equation (65).

∥T2∥ ≤ ∥
Hℓ∑
h=0

γh−1 · rνt
(sh, ah) ·

 Hℓ∑
j=0

(∇2
θ log πθ∗(ν)(aj |sj)−∇2

θ log πθK(ν)(aj |sj))

 ∥ (66)

≤ ∥
Hℓ∑
h=0

γh−1 · rνt
(sh, ah) ·

 Hℓ∑
j=0

(∇2
θ log πθ∗(ν)(aj |sj)−∇2

θ log πθK(ν)(aj |sj))

 ∥
≤

Hℓ∑
h=0

γh−1 · ∥rνt
(sh, ah)∥

 Hℓ∑
j=0

(∥∇2
θ log πθ∗(ν)(aj |sj)−∇2

θ log πθK(ν)(aj |sj)∥)


≤

Hℓ∑
h=0

γh−1 · ∥rνt
(sh, ah)∥HℓL2∥θ∗(ν)− θK(ν)∥

≤ L2RHℓ∥θ∗(ν)− θK(ν)∥
Hℓ∑
h=0

γh−1

= L2RH
2
ℓ ∥θ∗(ν)− θK(ν)∥,

where we use Cauchy-Schwartz and triangle inequality repetitively to get to the third inequality. Next, we use Assumption 3
on the Lipschitzness of the gradient of the score function and the bounded reward norm max(s,a) ∥rν(s, a)∥ = R to get the
next inequality. Finally, we use the upper bound on the geometric series to obtain the final expression.

Adding equations (64) and (66), we get the

∥∇2
θVs(ν, θ

∗(ν))−∇2
θVs(ν, θ

K(ν))∥ ≤ L′∥θ∗(ν)− θK(ν)∥ (67)

where, L′ = Lf1χ1
Hℓ

2 L2 + L2RH
2
ℓ and Lf1 = L2H

2
ℓR.

11.2.3. PROOF OF LEMMA 4.2 STATEMENT (III)

Proof. We start by considering the term

∇2
ν,θVs(ν, θ

∗(ν))−∇2
ν,θVs(ν, θ

K(ν)) ≤ EP (τ ;θ∗(ν))f3(τ)− EP (τ ;θK(ν))f4(τ) (68)

where we define

f3(τ) =

Hℓ∑
h=0

γh−1 · ∇νrν(sh, ah) ·

 Hℓ∑
j=0

∇θ log πθ∗(ν)(aj |sj)

T

(69)

f4(τ) =

Hℓ∑
h=0

γh−1 · ∇νrν(sh, ah) ·

 Hℓ∑
j=0

∇θ log πθK(ν)(aj |sj)

T

. (70)

Subsequently, we write the norm of the equation (68) into 2 parts as

∥∇2
ν,θVs(ν, θ

∗(ν))−∇2
ν,θVs(ν, θ

K(ν))∥ ≤ ∥EP (τ ;θ∗(ν))f3(τ)− EP (τ ;θK(ν))f3(τ) (71)

+ EP (τ ;θK(ν))f3(τ)− EP (τ ;θK(ν))f4(τ)∥
≤ ∥T3∥+ ∥T4∥,

where, T3 = EP (τ ;θ∗(ν))f3(τ)−EP (τ ;θK(ν))f3(τ) and T4 = EP (τ ;θK(ν))f3(τ)−EP (τ ;θK(ν))f4(τ). We next, upper-bound
the individual terms to get the final Lispchitz constant.

20



Submission and Formatting Instructions for ICML 2023

First, we focus on the first term of inequality i.e T3 given as

T3 = EP (τ ;θ∗(ν))f3(τ)− EP (τ ;θK(ν))f3(τ) (72)

≤ sup
f3

[EP (τ ;θ∗(ν))f3(τ)− EP (τ ;θK(ν))f1(τ)]

≤ Lf3χ2dTV (P (τ ; θ
∗(ν)), P (τ ; θK(ν)))

≤ Lf3χ2
Hℓ

2
L2∥θ∗(ν)− θK(ν)∥,

where we convert the inequality first to a standard Integral Probability Metric form by taking the supremum and then dividing
and multiplying with the Lipschitz constant Lf3 from equation (81), and then we get the final expression in terms of Total
variation where χ2 is the constant. Then, we upper-bounded the total variation using the results from equation (57) to get
the final expression.

Now, we proceed to the second term of the equation T4 and derive an upper bound as

T4 =
∑
τ

P (τ ; θK(ν))(f3(τ)− f4(τ)) (73)

≤ f3(τ ′)− f4(τ ′)

=

Hℓ∑
h=0

γh−1 · ∇νrν(sh, ah) ·

 Hℓ∑
j=0

(∇θ log πθ∗(ν)(aj |sj)−∇θ log πθK(ν)(aj |sj))

T

where we consider the trajectory τ ′ in the sum with the maximum value and upper bound by that to get equation (73).

Next, we upper-bound the norm ∥T4∥ as

∥T4∥ ≤

∥∥∥∥∥
Hℓ∑
h=0

γh−1 · ∇νrν(sh, ah) ·

 Hℓ∑
j=0

(∇θ log πθ∗(ν)(aj |sj)−∇θ log πθK(ν)(aj |sj))

T ∥∥∥∥∥
≤

Hℓ∑
h=0

γh−1 · ∥∇νrν(sh, ah)∥

 Hℓ∑
j=0

∥∇θ log πθ∗(ν)(aj |sj)−∇θ log πθK(ν)(aj |sj))∥


≤

Hℓ∑
h=0

γh−1 · ∥∇νrν(sh, ah)∥HℓL1∥θ∗(ν)− θK(ν)∥

≤ L1LrHℓ∥θ∗(ν)− θK(ν)∥
Hh∑
h=0

γh−1

≤ L1LrH
2
ℓ ∥θ∗(ν)− θK(ν)∥, (74)

where we use Cauchy-Schwartz and triangle inequality repetitively to get to the third inequality. Next, we use Assumption
3 on the Lipschitzness of the gradient of the score function and the bounded reward R (cf. Assumption 2). Finally, we
upper-bound sum of this geometric series to obtain the final expression. Adding equations (72) and (74), we get the

∥∇2
ν,θVs(ν, θ

∗(νt))−∇2
ν,θVs(νt, θ

K(ν))∥ ≤ L′′∥θ∗(ν)− θK(ν)∥ (75)

where, L′′ = Lf3χ2
Hℓ

2 L2 + L1LrH
2
ℓ and Lf3 = LrL1H

2
ℓ .
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12. Additional Supporting Lemmas
12.1. Proof of Lispchitzness for f1(·) defined in (61)

Here, we prove that the function denoted as f1(θ∗(ν)) =
∑Hℓ

h=0 γ
h−1 · rνt(sh, ah) ·

(∑Hℓ

j=0∇2
θ log πθ∗(ν)(aj |sj)

)
is

Lispchitz continuous w.r.t θ with Lipschitz constant Lf1 i.e

∥f1(θ∗(ν))− f1(θK(ν))∥ ≤ Lf1∥θ∗(ν)− θK(ν)∥. (76)

First, we begin with the difference term as :

f1(θ
∗(ν))− f1(θK(ν)) =

Hℓ∑
h=0

γh−1rνt
(sh, ah)

 Hℓ∑
j=0

(∇2
θ log πθ∗(ν)(aj |sj)−∇2

θ log πθK(ν)(aj |sj))

 . (77)

Subsequently, taking the norm we get

∥f1(θ∗(ν))− f1(θK(ν))∥

=

∥∥∥∥∥
Hℓ∑
h=0

γh−1rνt
(sh, ah)

 Hℓ∑
j=0

(∇2
θ log πθ∗(ν)(aj |sj)−∇2

θ log πθK(ν)(aj |sj))

∥∥∥∥∥
≤

Hℓ∑
h=0

γh−1 · ∥rνt
(sh, ah)∥ ·

 Hℓ∑
j=0

∥∇2
θ log πθ∗(ν)(aj |sj)−∇2

θ log πθK(ν)(aj |sj)∥


≤

Hℓ∑
h=0

γh−1 · ∥rνt
(sh, ah)∥L2Hℓ∥θ∗(ν)− θK(ν)∥

≤ L2H
2
ℓR∥θ∗(ν)− θK(ν)∥, (78)

where we use Cauchy-Schwartz and triangle inequality repeatedly to get the subsequent inequalities. In the third inequality,
we use the Lipschitzness assumption of∇2

θ log πθ∗(ν)(aj |sj) from Assumption 3 and finally using the boundedness of the
reward values and upper-bounding the Geometric series, we get the final expression. Thus f1(θ∗(ν)) is Lispchitz continuous
w.r.t θ with Lipschitz constant Lf1 = L2H

2
ℓR.

12.2. Proof of Lispchitzness for f3(·) defined in (69)

Here, we prove that the function denoted as f3(θ∗(ν)) =
∑Hℓ

h=0 γ
h−1 · ∇νrν(sh, ah) ·

(∑Hℓ

j=0∇θ log πθ∗(ν)(aj |sj)
)T

is
Lispchitz continuous w.r.t θ with Lipschitz constant Lf3 i.e

∥f3(θ∗(ν))− f3(θK(ν))∥ ≤ Lf3∥θ∗(ν)− θK(ν)∥ (79)

First, we begin with the difference term as :

f3(θ
∗(ν))− f3(θK(ν))

=

Hℓ∑
h=0

γh−1 · ∇νrν(sh, ah) ·

 Hℓ∑
j=0

(∇θ log πθ∗(ν)(aj |sj)−∇θ log πθ∗(ν)(aj |sj))

T

(80)
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Subsequently, taking the norm we get

∥f3(θ∗(ν))− f3(θK(ν))∥

= ∥
Hℓ∑
h=0

γh−1 · ∇νrν(sh, ah) ·

 Hℓ∑
j=0

(∇θ log πθ∗(ν)(aj |sj)−∇θ log πθ∗(ν)(aj |sj))

T

∥

≤
Hℓ∑
h=0

γh−1 · ∥∇νrν(sh, ah)∥ ·

 Hℓ∑
j=0

(∥∇θ log πθ∗(ν)(aj |sj)−∇θ log πθ∗(ν)(aj |sj)∥)


≤ LrL1Hℓ∥θ∗(ν)− θK(ν)∥

Hℓ∑
h=0

γh−1

≤ LrL1H
2
ℓ ∥θ∗(ν)− θK(ν)∥, (81)

where we use Cauchy-Schwartz and triangle inequality repeatedly to get the subsequent inequalities. In the third inequality,
we use the Lipschitzness assumption of∇2

θ log πθ∗(ν)(aj |sj) from Assumption 3. Finally, using the Assumption 2 i.e reward
Lipschitzness and upper-bounding the Geometric series, we get the final expression. Thus f3(θ∗(ν)) is Lispchitz continuous
w.r.t θ with Lipschitz constant Lf3 = LrL1H

2
ℓ .

12.3. Proof of Smoothness Condition on the Value function

Here, we prove the smoothness of the value function i.e. the gradient of the value function is Lispchitz continuous w.r.t θ
with Lipschitz constant L1. We begin with the definition of the gradient difference of the value function from the equation
(27) as:

∇θVs(ν, θ
∗(ν))−∇θVs(νt, θ

K(ν)) = EP (τ ;θ∗(ν))V1(τ)− EP (τ ;θK(ν))V2(τ) (82)

= EP (τ ;θ∗(ν))V1(τ)− EP (τ ;θK(ν))V1(τ)

+ EP (τ ;θK(ν))[V1(τ)− V2(τ)]
= Σ1 +Σ2

where, first we substitute V1 =
∑Hℓ−1

h=0 γh−1rνt
(sh, ah)

(∑Hℓ−1
j=0 ∇θ log πθ∗(νt)(aj |sj)

)
and V2 =∑Hℓ−1

h=0 γh−1rνt
(sh, ah)

(∑Hℓ−1
j=0 ∇θ log πθK(νt)(aj |sj)

)
. Subsequently, by adding and subtracting EP (τ ;θK(ν))V2(τ), we

get the final expression, where Σ1 = EP (τ ;θ∗(ν))V1(τ)− EP (τ ;θK(ν))V1(τ) and Σ2 = EP (τ ;θK(ν))[V1(τ)− V2(τ)]. Now,
first, we derive the Lipschitz constant for V1 as

∥V1(θ∗(ν)− V1(θK(ν))∥

≤
Hℓ−1∑
h=0

γh−1∥rνt
(sh, ah)∥

Hℓ−1∑
j=0

∥∇θ log πθ∗(νt)(aj |sj)−∇θ log πθK(νt)(aj |sj)∥


≤ H2

l RL1∥θ∗(ν)− θK(ν)∥, (83)

where we first use Cauchy-Schwartz and triangle inequality to get the first inequality. Next, we upper-bound the reward
with R from Assumption 2, Lipschitzness of policy gradient from Assumption 3, and finally upper-bounding the Geometric
series, we get the final expression. The Lipschitz constant L5 = H2

l RL1.

We can subsequently upper-bound Σ1 with the total variation distance as

Σ1 ≤ sup
V

[EP (τ ;θ∗(ν))V (τ)− EP (τ ;θK(ν))V (τ)] (84)

≤ L5dTV (P (τ ; θ
K(ν)), P (τ ; θ∗(ν)))

≤ L5
HL2

2
∥θ∗(ν)− θK(ν)∥
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where first we divide by the Lipschitz constant of the function and subsequently upper-bound with the Total Variation
distance. Finally, we substitute the total variation distance expression from the equation (57) to get the final expression.

Now, the second term can be written as

Σ2 = EP (τ ;θK(ν))[V1(τ)− V2(τ)] ≤ V1(τ ′)− V2(τ ′), (85)

where we take the trajectory with the maximum difference and upper-bound the term. Subsequently, ∥Σ2∥ ≤ ∥V1(τ ′)−
V2(τ

′)∥ = H2
l RLθ1∥θ∗(ν)− θK(ν)∥ from equation (83).

Finally, the norm of the gradient difference of the value function from equation (82) as

∥∇θVs(ν, θ
∗(ν))−∇θVs(νt, θ

K(ν))∥ ≤ L6∥θ∗(ν)− θK(ν)∥ (86)

where L6 = L5
HL2

2 + L5 and L5 = H2
l RLθ1

12.4. Upper-bound on the Norm of the hessian defined in (28)

Here, we prove an upper-bound on the norm of the hessian defined in (28) given as

∇2
θVs(νt, θ

K(νt)) = EP (τ ;θK(νt))

[
Hℓ∑
h=0

γh−1rνt(sh, ah)

 Hℓ∑
j=0

∇2
θ log πθK(νt)(aj |sj)

] (87)

≤
Hℓ∑
h=0

γh−1rνt(sh, ah)

 Hℓ∑
j=0

∇2
θ log πθK(νt)(aj |sj)

∑
τ

P (τ ; θK(νt))

=

Hℓ∑
h=0

γh−1rνt(sh, ah)

 Hℓ∑
j=0

∇2
θ log πθK(νt)(aj |sj)


where, first we upper-bound the function with the trajectory which has the maximum inner-value. Next we, upper-bound the
norm as

∥∇2
θVs(νt, θ

K(νt))∥ ≤ ∥
Hℓ∑
h=0

γh−1rνt(sh, ah)

 Hℓ∑
j=0

∇2
θ log πθK(νt)(aj |sj)

 ∥ (88)

≤
Hℓ∑
h=0

γh−1∥rνt(sh, ah)∥

 Hℓ∑
j=0

∥∇2
θ log πθK(νt)(aj |sj)∥


≤ H2

l RL
1
π

where, we first upper-bound with successive application of Cauchy-Schwartz and Triangle inequality to get the second
inequality. Finally, with the upper bound on ∥rνt(sh, ah)∥ ≤ R from Assumption (15), Lipschitzness of policy gradients
from Assumption 2 and upper-bounding the geometric series, we get the final expression.

12.5. Upper-bound on the Norm of the hessian defined in (28)

Here, we prove an upper-bound on the norm of the mixed second-order Jaccobian term defined in (29) given as

∇2
ν,θVs(νt, θ

K(νt)) = EP (τ ;θK(νt))

[
Hℓ∑
h=0

γh−1∇νrνt
(sh, ah)

( Hℓ∑
j=0

[∇θ log πθK(νt)(aj |sj)]
T

)]
(89)

≤
Hℓ∑
h=0

γh−1∇νrνt(sh, ah)

( Hℓ∑
j=0

[∇θ log πθK(νt)(aj |sj)]
T

)
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where first we upper-bound the function with the trajectory which has the maximum inner value. Next, we, upper-bound the
norm as

∥∇2
ν,θVs(νt, θ

K(νt))∥ ≤ ∥ ≤
Hℓ∑
h=0

γh−1∇νrνt
(sh, ah)

( Hℓ∑
j=0

[∇θ log πθK(νt)(aj |sj)]
T

)
∥ (90)

≤
Hℓ∑
h=0

γh−1∥∇νrνt(sh, ah)∥
( Hℓ∑

j=0

∥∇θ log πθK(νt)(aj |sj)∥
)
∥

≤ H2
l LrB

where we first upper-bound with the successive application of Cauchy-Schwartz and Triangle inequality to get the second
inequality. Finally, with the upper bound on ∥∇νrνt

(sh, ah)∥ ≤ Lr from Lipschitzness Assumption (15), Lipschitzness of
policy parametrization from Assumption 2 and upper-bounding the geometric series, we get the final expression.

12.6. Proof of Lemma 4.3

Proof. Let us start by first deriving the upper bounds for the terms ϕ1 and ϕ2 as defined in the equation (41) as follows. For
ϕ1(τ), we have

∥ϕ1(τ)∥ =

∥∥∥∥∥U(τ) ·
H−1∑
h=0

[−∇2
v,θVs(ν, θ

∗(ν))∇2
θVs(ν, θ

∗(ν))−1∇θfh(θ
∗(ν))]

∥∥∥∥∥. (91)

We define the term κ which explains the relative conditioning of the two matrix norms. We define the mixed condition
number as

κ =
∥∇2

v,θVs(ν, θ
∗(ν))∥

∥∇2
θVs(ν, θ

∗(ν))∥
≤ HlLrB

lπ(1− γ)
(92)

Next to upper-bound the second term relating to the difference in ∥ϕ1 − ϕ2∥ in the equation, we proceed first by upper-
bounding the product difference

∥∆∥ = ∥∆1 −∆2∥ (93)

where we define

∆1 =∇2
v,θVs(ν, θ

∗(ν))∇2
θVs(ν, θ

∗(ν))−1∇θfh(θ
∗(ν)), (94)

∆2 =∇2
v,θVs(ν, θ

K(ν))∇2
θVs(ν, θ

K(ν))−1∇θfh(θ
K(ν)). (95)

Also, for simplicity of notations lets take ψ1 = ∇2
v,θVs(ν, θ

∗(ν))∇2
θVs(ν, θ

∗(ν))−1 and ψ2 =

∇2
v,θVs(ν, θ

K(ν))∇2
θVs(ν, θ

K(ν))−1, which thus (93) boils down to upper-bounding

∆ = ∥ψ1fh(θ
∗(ν))− ψ2fh(θ

K(ν))∥ (96)

= ∥ψ1fh(θ
∗(ν))− ψ1fh(θ

K(ν)) + ψ1fh(θ
K(ν))− ψ2fh(θ

K(ν))∥
≤ ∥ψ1∥∥fh(θ∗(ν))− fh(θK(ν))∥+ ∥ψ1 − ψ2∥∥fh(θK(ν))∥
≤ κL1∥θ∗(ν)− θK(ν)∥+ L2∥ψ1 − ψ2∥,

where, first we expand add and subtract the term ψ1fh(θ
K(ν)), and subsequently by applying Cauchy-Schwartz and triangle

inequality, we get to the third inequality. For the final inequality, we apply equation and Lispchitzness Assumptions (15) to
get the final expression in equation (96). Next, we focus on upper bounding the second term of the expression specifically
∥ψ1 − ψ2∥

∥ψ1 − ψ2∥ =∥∇2
v,θVs(ν, θ

∗(ν))∇2
θVs(ν, θ

∗(ν))−1 −∇2
v,θVs(ν, θ

∗(ν))∇2
θVs(ν, θ

K(ν))−1 (97)

+∇2
v,θVs(ν, θ

∗(ν))∇2
θVs(ν, θ

K(ν))−1 −∇2
ν,θVs(ν, θ

K(ν))∇2
θVs(ν, θ

K(ν))−1∥
=∥∇2

ν,θVs(ν, θ
∗(ν))∇2

θVs(ν, θ
∗(ν))−1 −∇2

v,θVs(ν, θ
∗(ν))∇2

θVs(ν, θ
K(ν))−1∥ (98)

+ ∥∇2
ν,θVs(ν, θ

∗(ν))∇2
θVs(ν, θ

K(ν))−1 −∇2
v,θVs(ν, θ

K(ν))∇2
θVs(ν, θ

K(ν))−1∥
=Ψ21 +Ψ22,
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where we expand the definition of ∥ψ1 − ψ2∥ and subsequently apply triangle inequality and Cauchy-Schwartz which then
boils to upper-bounding the sum of two terms Ψ21 +Ψ22. For Ψ21, we have

Ψ21 ≤ ∥∇2
ν,θVs(ν, θ

∗(ν))∥∥∇2
θVs(ν, θ

∗(ν))−1 −∇2
v,θVs(θ

K(ν))−1∥ (99)

≤ Lν,θ∥∇2
θVs(ν, θ

∗(ν))−1 −∇2
θVs(ν, θ

K(ν))−1∥
= Lν,θ∥∇2

θVs(ν, θ
∗(ν))−1(∇2

θVs(ν, θ
∗(ν))−∇2

θVs(ν, θ
K(ν)))∇2

θVs(ν, θ
K(ν))−1∥

≤ Lν,θ∥∇2
θVs(ν, θ

∗(ν))∥−1∥(∇2
θVs(ν, θ

∗(ν))−∇2
θVs(ν, θ

K(ν)))∥∥∇2
θVs(ν, θ

K(ν))∥−1

≤ Lν,θL
′

l2π
∥θ∗(ν)− θK(ν)∥

where we use Cauchy-Schwartz inequality and triangle inequality iteratively to get the final inequality. Next, we use the
upper bounds and lower bounds of the hessian and mixed hessian matrices defined in Assumptions to get the final expression.
Now, Lν,θ = H2

l LrB from equation (90), L′ = Lf1χ1
Hℓ

2 L2 + L2RH
2
ℓ and Lf1 = L2H

2
ℓR from equation (67). Finally,

the second-term Ψ22 from equation (97) can be upper-bounded as

Ψ22 ≤ ∥∇2
ν,θVs(ν, θ

∗(ν)−∇2
v,θVs(ν, θ

K(ν))∥∥∇2
θVs(ν, θ

K(ν))∥−1

≤ L′′

lπ
∥θ∗(ν)− θK(ν)∥, (100)

where, similarly we use triangle inequality with Cauchy-Schwartz to get the final upper-bound of equation (100). Now,
L′′ = Lf3χ2

Hℓ

2 L2 + L1LrH
2
ℓ and Lf3 = LrL1H

2
ℓ from equation (75)

Now, combining equations (99) and (100), we get the final upper-bound of the ∥ψ1 − ψ2∥ in equation (97) as

∥ψ1 − ψ2∥ ≤ (
Lν,θL

′

l2π
+
L′′

lπ
)∥θ∗(ν)− θK(ν)∥. (101)

Hence, finally replacing the upper-bound of Ψ2 from equation (101) in equation (96) to obtain the upper-bound on the
function difference term ∆ as

∆ ≤ κL1∥θ∗(ν)− θK(ν)∥+ (
Lν,θL

′

l2π
+
L′′

lπ
)∥θ∗(ν)− θK(ν)∥ (102)

= γ1∥θ∗(ν)− θK(ν)∥,

with γ1 := κL1 +
Lν,θL

′

l2π
+ L′′

lπ
Hence, with the above bounds, we proceed to upper-bound the term II in equation (39) i.e

∥Eτ∼P (τ ;θK(ν))[ϕ1(τ)− ϕ2(τ)]∥ as

∥Eτ∼P (τ ;θK(ν))[ϕ1(τ)− ϕ2(τ)]∥ ≤ ∥ϕ1(τ ′)− ϕ1(τ ′)∥ (103)

= ∥U(τ) ·
H−1∑
h=0

(∆1 −∆2)∥

≤ ∥
H−1∑
h′=0

u(sh, ah)∥∥
H−1∑
h=0

(∆1 −∆2)∥

≤ H2ũ∥∆1 −∆2∥
≤ H2ũγ1∥θ∗(ν)− θK(ν)∥,

where first we select the trajectory τ ′ with the maximum sum and subsequently using the Cauchy-Schwartz inequality we
get the second equation. Based on the assumption of bounded utility u(s, a) ≤ ũ,∀(s, a), we get the third equation and
finally using the upper bound of ∆1 −∆2 from equation (102), we get the final expression for equation (103).
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12.7. Proof of Lemma 4.4

Proof. Here, we derive an upper bound on the tracking term due to the use of surrogate gradients ∥θ∗(νt)− θK(νt)∥. To
begin the proof, we start with the smoothness in the value function shown in equation (86), as

Vs(νt, θ
k+1(νt)) ≤ Vs(νt, θk(νt)) + ⟨∇θVs(νt, θ

k+1(νt)), θ
k+1(νt)− θk(νt)⟩ (104)

+
L6

2
∥θk+1(νt)− θk(νt)∥2.

where L6 = L5
H2

ℓL2

2 + L5 and L5 = HlRLθ1 . Now, from the update of θ from Algorithm 2, we know that

θk+1(νt) = θk(νt)− αℓ∇θVs(νt, θ
k(νt)). (105)

Replacing the update in equation (104), we have

Vs(νt, θ
k+1(νt)) ≤Vs(νt, θk(νt)) + ⟨∇θVs(νt, θ

k+1(νt)),−αℓ∇θVs(νt, θ
k(νt))⟩

+
L6

2
∥ − αℓ∇θVs(νt, θ

k(νt))∥2

=Vs(νt, θ
k(νt))− αℓ

(
1− αℓL6

2

)
∥∇θVs(νt, θ

k(νt))∥2, (106)

where we expand the expression after replacing the update in equation (104).

Next, from Assumption 4, we note that for the value function, it holds that

∥∇θVs(ν, θ
k(ν))∥2 ≥ µ

2
(Vs(ν, θ

k(ν))− Vs(ν, θ∗(ν))). (107)

Assumption 4 ensures that the objective satisfies the gradient dominance or the PL condition, which can be satisfied in
practice for various settings. For instance, Assumption 4 is satisfied in our setting for softmax policy parametrization as
detailed in (Mei et al., 2020b, Lemma 8). Now, replacing the PL condition in equation (106), we have

Vs(νt, θ
k+1(νt))− Vs(νt, θk(νt)) ≤ −αℓ(1−

αℓL6

2
)
µ

2
(Vs(ν, θ

k(ν))− Vs(ν, θ∗(ν)))

= −α3(Vs(νt, θ
k(νt))− Vs(νt, θ∗(νt))), (108)

where, after replacing the PL condition in equation (106), we substitute α3 = αℓ(1− αℓL6

2 )µ2 for simplicity of calculations.

Vs(νt, θ
k+1(νt))− Vs(νt, θ∗(νt))) ≤ (1− α3)(Vs(νt, θ

k(νt))− Vs(νt, θ∗(νt)))
Vs(νt, θ

K(νt))− Vs(νt, θ∗(νt))) ≤ (1− α3)
K(Vs(νt, θ

0(νt))− Vs(νt, θ∗(νt))), (109)

where the first equation comes from algebraic manipulation and applying the equation recursively, we get the second
inequality, assuming 0 ≤ α3 ≤ 1. Now, we note that from the smoothness of value function, we have the upper bound

Vs(νt, θ
0(νt))− Vs(νt, θ∗(νt)) ≤

L6

2
∥θ∗(νt)− θ0(νt)∥2, (110)

where L6 = L5
HL2

2 + L5, L5 = H2
l RL1 and we use the Lipschitz smoothness assumption and expand along the point

νt, θ
∗, for which the gradient term vanishes. Also, since PL implies quadratic growth, it holds that

Vs(νt, θ
K(νt))− Vs(νt, θ∗(νt)) ≥

µ

2
∥θK(νt)− θ∗(νt)∥2. (111)

Now, substituting the equations (110), (111) in (109) to obtain

∥θK(νt)− θ∗(ν)∥2 ≤ (1− α3)
K L6

µ
Z, (112)

where, Z := maxν ∥θ0 − θ∗(ν)∥2, α3 = αℓ(1− αℓL6

2 )µ2 and L6 = L5
HℓL2

2 + L5 and L5 = H2
l RL1.
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13. Discuss of Assumption 3 and Assumption 4
• Assumption 3 ensure certain properties of the policy parametrization such as Lipschitz policy, bounded score function,

Lipschitz score function, and Lipschitz Hessian of the log of the policy. We remark that these assumptions are not
restrictive and satisfied in practice for practical classes of policies. For example, this assumption is satisfied for softmax
policy parametrization.

πθ(a|s) =
exp θTϕ(s, a)∑
a′ exp θTϕ(s, a′)

(113)

where, first we write down the expression of the softmax policy gradient parametrization with function approximation
ϕ. Subsequently, taking log and taking the gradient w.r.t to the policy parameterization, we get

∇θ log πθ(a|s) = ϕ(s, a)− 1∑
a′ exp θTϕ(s, a′)

∑
a′

exp θTϕ(s, a′)ϕ(s, a′) (114)

= ϕ(s, a)−
∑
a′

πθ(a|s)ϕ(s, a′)

where we can denote ϕ̂s,a′ =
∑

a′ πθ(a|s)ϕ(s, a′). Now, taking the norm on the LHS of equation (114) we get

∥∇θ log πθ(a|s)∥ ≤ ∥ϕ(s, a)∥+ ∥ϕ(s, a′)∥ (115)

where, we apply triangle inequality to get the final bound, which imposes certain constraints on the norm of the function
approximation ∥ϕ(s, a)∥ ≤ ζ1 which is a common assumption in various scenarios.

∥∇θπθ(a|s)∥ ≤ kζ1 (116)

where, we expand∇θ log πθ(a|s) = 1
πθ(a|s)∇θπθ(a|s)

• Assumption 4 ensures that the objective function satisfies some geometric properties such as PL condition. We remark
that the value function satisfies PL condition with softmax policy parametrization (see (Mei et al., 2020b, Lemma 8)).
Further, a property that we need for our analysis to hold is that the Hessian of the objective function has all non-zero
eigenvalues. This assumption holds for softmax parametrizations. Now, in order to show that we first consider the
softmax-parametrization considered in equation (114), we first compute the hessian as

∇2
θ log πθ(a|s) = ∇θ[ϕ(s, a)−

∑
a′

πθ(a|s)ϕ(s, a′)] (117)

= −
∑
a′

∇θπθ(a|s)ϕ(s, a′)T

= −Eπ[∇θ log πθ(a|s)ϕ(s, a′)T ]

= Eπ[ϕ̂(s, a
′)ϕ(s, a′)T − ϕ(s, a)ϕ(s, a′)T ]

Now, finally, we substitute this to the equation of hessian of the value function in equation (117)

∇2
θVs(νt, θ

K(νt)) = EP (τ ;θ)

[
R(τ)

Hℓ−1∑
j=0

∇2
θ log πθK(νt)(aj |sj)

] (118)

= EP (τ ;θ)Eπ

[
R(τ)

Hℓ−1∑
j=0

[ϕ̂(s, a′)ϕ(s, a′)T − ϕ(s, a)ϕ(s, a′)T ]

]

From the above, it is evident to ensure non-singular eigenvalues, we need to ensure non-singularity for the function
approximation matrix ϕϕT which has been a standard assumption in several settings (Sutton et al., 2009; Maei et al.,
2009)
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