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Abstract

The Segmentation Anything Model (SAM) has
recently emerged as a foundation model for ad-
dressing image segmentation. Owing to the in-
trinsic complexity of medical images and the high
annotation cost, the medical image segmentation
(MIS) community has been encouraged to investi-
gate SAM’s zero-shot capabilities to facilitate au-
tomatic annotation. Inspired by the extraordinary
accomplishments of interactive medical image
segmentation (IMIS) paradigm, this paper focuses
on assessing the potential of SAM’s zero-shot ca-
pabilities within the IMIS paradigm to amplify
its benefits in the MIS domain. Regrettably, we
observe that SAM’s vulnerability to prompt forms
(e.g., points, bounding boxes) becomes notably
pronounced in IMIS. This leads us to develop a
mechanism that adaptively offers suitable prompt
forms for human experts. We refer to the mech-
anism above as temporally-extended prompts op-
timization (TEPO) and model it as a Markov de-
cision process, solvable through reinforcement
learning. Numerical experiments on the stan-
dardized benchmark Brats2020 demonstrate
that the learned TEPO agent can further enhance
SAM’s zero-shot capability in the MIS context.

1. Introduction
The Segmentation Anything Model (SAM) (Kirillov et al.,
2023) has recently been proposed as a foundational model
for addressing image segmentation problems. SAM’s effec-
tiveness is principally evaluated in natural image domains,
demonstrating a remarkable prompt-based, zero-shot gener-
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alization capability. Segmentation within medical images
(MIS), on the other hand, presents complex challenges ow-
ing to their substantial deviation from natural images, en-
compassing multifaceted modalities, intricate anatomical
structures, indeterminate and sophisticated object bound-
aries, and extensive object scales (Sharma & Aggarwal,
2010; Hesamian et al., 2019; Huang et al., 2023).

Predominant MIS methods principally employ domain-
specific architectures and necessitate reliance upon massive,
high-quality expert annotations (Ronneberger et al., 2015;
Isensee et al., 2021; Zhou et al., 2021; Cao et al., 2023).
In light of the considerable expenditure incurred by dense
labeling, the community has embarked on exploring SAM’s
zero-shot generalization capabilities in MIS tasks, thereby
fostering automated annotation of medical images (Ji et al.,
2023a;b; Mohapatra et al., 2023; Deng et al., 2023; Zhou
et al., 2023; He et al., 2023; Mazurowski et al., 2023; Ma &
Wang, 2023; Cheng et al., 2023; Zhang & Jiao, 2023; Roy
et al., 2023; Huang et al., 2023; Mattjie et al., 2023).

Motivated by the remarkable achievements of interactive
medical image segmentation (IMIS), this paper goes a step
further and centers on investigating the potential of zero-
shot capabilities of SAM in IMIS to magnify the advantages
of SAM in MIS domain. Many works demonstrate the sig-
nificant performance enhancement attributable to the IMIS
paradigm (Xu et al., 2016; Rajchl et al., 2016; Lin et al.,
2016; Castrejon et al., 2017; Wang et al., 2018; Song et al.,
2018; Liao et al., 2020; Ma et al., 2021; Li et al., 2021).
Specifically, IMIS overcomes the performance limitation
inherent in end-to-end MIS approaches by reconceptualiz-
ing MIS as a multi-stage, human-in-the-loop task. At each
iteration, medical professionals impart valuable feedback
(e.g., designating critical points, demarcating boundaries, or
construing bounding boxes) to identify inaccuracies in the
model output. Consequently, the model refines the segmen-
tation results following human feedback.

The congruity between the human feedback forms and the
prompt forms in SAM facilitates the seamless integration
of SAM. Nevertheless, recent investigations reveal that, in
contrast to natural image segmentation, the susceptibility
of SAM to prompt forms (e.g., points or bounding boxes)
is significantly heightened within MIS tasks, resulting in
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substantial discrepancies in zero-shot performance when
various prompt forms are employed (Cheng et al., 2023;
Roy et al., 2023; Zhang & Jiao, 2023). Regrettably, we find
this issue is markedly exacerbated within the IMIS context.

This phenomenon can be attributed to two primary factors.
Firstly, the segmentation stages are interdependent; the pre-
vious prompt forms selection influences the ensuing seg-
mentation and the choice of subsequent prompt forms. Sec-
ondly, human experts display preferences and stochasticity
in their feedback, seldom contemplating the ramifications
of the prompt forms on the performance and the intricate
interconnections between antecedent and successive prompt
forms. Consequently, this revelation impels us to recom-
mend the most efficacious prompt forms for human feedback
at each successive IMIS stage, a challenge we designate as
temporally-extended prompts optimization.

As a formidable instrument for addressing sequential
decision-making, reinforcement learning (RL) (Sutton &
Barto, 2018) demonstrates remarkable competencies not
only in domains such as chess, video games, and robotics
control but also in training foundational models (Ouyang
et al., 2022; Wei et al., 2022) and IMIS (Liao et al., 2020; Ma
et al., 2021; Li et al., 2021). Given that temporally-extended
prompt optimization encompasses both the foundational
model and IMIS, we formulate this problem as a Markov de-
cision process (MDP) and employ RL for its resolution. The
framework above is then instantiated as the algorithm de-
noted by TEPO. During each stage, TEPO agent determines
which prompt form is most suitable for recommendation to
human, considering the current segmentation outcomes and
historical prompts. The ultimate objective is to augment the
performance of SAM in each stage relative to its preceding
iteration, thereby maximizing its efficacy.

The contributions encompass three distinct aspects: 1) In
an unprecedented discovery, we ascertain that sequential
prompt forms constitute the crucial elements influencing
the zero-shot performance of SAM in IMIS, subsequently
proposing a pertinent temporally-extended prompts opti-
mization problem; 2) By conceptualizing the temporally-
extended prompts optimization as an MDP, we employ
RL to optimize the sequential selection of prompt forms,
thereby enhancing the zero-shot performance of SAM in
IMIS; 3) The performance juxtaposition and ablation stud-
ies conducted on the standardized benchmark Brats2020
(Menze et al., 2014) substantiate the efficacy of the TEPO
agent in ameliorating SAM’s zero-shot capability.

2. Related Work and Preliminaries
2.1. Interactive Medical Image Segmentation

Before remarkable advancements in automatic segmenta-
tion through convolutional neural networks (CNNs), many

traditional interactive techniques are employed within
IMIS (Zhao & Xie, 2013). Within this scope, the Ran-
domWalk method (Grady, 2006) generates a weight map
with pixels as vertices and segments images based on user in-
teraction. Approaches such as GrabCut (Rother et al., 2004)
and GraphCut (Boykov & Jolly, 2001) connect image seg-
mentation to graph theory’s maximum flow and minimum
cut algorithms. Geos (Criminisi et al., 2008) introduces a
geodesic distance measurement to ascertain pixel similarity.

Deep learning-based IMIS methods have become a topic
of great interest in recent years. Xu et al. (2016) suggests
employing CNNs for interactive image segmentation. Deep-
Cut (Rajchl et al., 2016) and ScribbleSup (Lin et al., 2016)
utilize weak supervision in developing interactive segmen-
tation techniques. DeepIGeoS (Wang et al., 2018) incorpo-
rates a geodesic distance metric to generate a hint map.

Viewing the interactive segmentation process as a sequen-
tial procedure lends itself naturally to using reinforcement
learning (RL). Polygon-RNN (Castrejon et al., 2017) funda-
mentally segments target as polygons, iteratively selecting
polygon vertices through a recurrent neural network (RNN).
While Polygon-RNN+ (Acuna et al., 2018) adopts a similar
approach to Polygon-RNN, it employs RL to learn vertex
selection. SeedNet (Song et al., 2018) constructs an ex-
pert interaction generation RL model capable of obtaining
simulated interaction data at each interaction stage.

IteR-MRL (Liao et al., 2020) and BS-IRIS (Ma et al., 2021)
conceptualize the dynamic interaction process as a Markov
Decision Process (MDP) and apply multi-agent RL models
for image segmentation purposes. MECCA (Li et al., 2021)
establishes a confidence network based on IteR-MRL, seek-
ing to mitigate the pervasive “interactive misunderstanding”
issue that plagues RL-based IMIS techniques and ensure the
effective utilization of human feedback. Additionally, Liu
et al. (2023) integrates SAM within the 3D Slicer software,
thereby facilitating the process of designing, evaluating, and
employing SAM in the context of IMIS.

2.2. Segment Anything Model

The Segmentation Anything Model (SAM) (Kirillov et al.,
2023), recently introduced by Meta, serves as a fundamen-
tal framework for tackling image segmentation challenges.
Motivated by the robust performance of foundational mod-
els in NLP and CV domains, researchers endeavored to
establish a unified model for complete image segmentation
tasks. Nonetheless, the actual data in the segmentation field
necessitates revision and diverges from the design inten-
tions mentioned above. Consequently, Kirillov et al. (2023)
stratifies the process into three distinct phases: task, model,
and data. Refer to the primary publication (Kirillov et al.,
2023) and a contemporary survey (Zhang et al., 2023) for
comprehensive explanations.
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Task. Drawing inspiration from foundational NLP and CV
models, Kirillov et al. (2023) introduces the promptable
segmentation task to generate a valid segmentation mask in
response to any given segmentation prompt. Such prompts
delineate the segmentation target within an image and may
comprise a location (or point), a range (or bounding box),
or a textual description of the object to be segmented. A
valid output mask necessitates the production of a plausible
mask for at least one target object, even when the prompt is
inherently ambiguous or alludes to multiple objects.

Figure 1: The screenshot of SAM (Kirillov et al., 2023).

Model. The promptable segmentation task, paired with the
objective of real-world applicability, imposes restrictions
on the model architecture. Kirillov et al. (2023) devises
a streamlined yet efficacious model, known as SAM (Fig-
ure 1), which encompasses a powerful image encoder that
computes image embeddings, a prompt encoder that embeds
prompts, and a lightweight mask decoder that amalgamates
the two information sources to predict segmentation masks.

Data. SAM necessitates training on an extensive and diverse
collection of masks to attain exceptional generalization ca-
pabilities on novel data distributions. Kirillov et al. (2023)
constructs a “data engine”, employing a model-in-the-loop
dataset annotation approach, thereby co-developing SAM in
tandem. The resulting dataset, SA-1B, incorporates over 1
billion masks derived from 11 million licensed and privacy-
preserving images.

2.3. Segment Anything in Medical Images

Building upon the foundational pre-trained models of SAM,
many papers have delved into investigating its efficacy in
diverse zero-shot MIS scenarios. Ji et al. (2023a) conducts
a comprehensive evaluation of SAM in the everything mode
for segmenting lesion regions within an array of anatom-
ical structures (e.g., brain, lung, and liver) and imaging
modalities (computerized tomography, abbreviated as CT,
and magnetic resonance imaging, abbreviated as MRI). Ji
et al. (2023b) subsequently scrutinizes SAM’s performance
in specific healthcare domains (optical disc and cup, polyp,
and skin lesion segmentation) utilizing both the automatic
everything mode and the manual prompt mode, employing
points and bounding boxes as prompts.

In brain extraction tasks with MRI, Mohapatra et al. (2023)
contrasts SAM’s efficacy with the renowned Brain Extrac-
tion Tool (BET), a component of the FMRIB Software Li-
brary. Deng et al. (2023) appraises SAM’s performance in

digital pathology segmentation tasks, encompassing tumor,
non-tumor tissue, and cell nuclei segmentation on high-
resolution whole-slide imaging. Zhou et al. (2023) adeptly
implements SAM in polyp segmentation tasks, utilizing 5
benchmark datasets under the everything setting. Recently,
an assortment of studies has rigorously tested SAM on over
10 publicly available MIS datasets or tasks (He et al., 2023;
Mazurowski et al., 2023; Ma & Wang, 2023; Wu et al., 2023;
Huang et al., 2023; Zhang & Liu, 2023).

Quantitative experimental results gleaned from these works
reveal that the zero-shot performance of SAM is, on the
whole, moderate and exhibits variability across distinct
datasets and cases. To elaborate: 1) Utilizing prompt in-
stead of everything mode, SAM can surpass state-of-the-art
(SOTA) performance in tasks characterized by voluminous
objects, smaller quantities, and well-defined boundaries
when reliant on dense human feedback; 2) However, a con-
siderable performance discrepancy remains between SAM
and SOTA methods in tasks involving dense and amorphous
object segmentation.

3. Method

Figure 2: The architecture of our proposed TEPO.

As elucidated in the preceding analysis, the susceptibility
of SAM to prompt forms is markedly pronounced in IMIS.
This serves as the impetus for devising a mechanism adept
at adaptively proffering suitable prompt forms for human
specialists, contingent upon the current progression of seg-
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mentation. The human expert subsequently imparts feed-
back to SAM, employing the recommended prompt form.
The ensuing discourse delineates the modeling of this mech-
anism, the temporally-extended prompts optimization, as an
MDP (Section 3.1) and elaborates on its resolution through
reinforcement learning (Section 3.2).

3.1. Problem Formulation

We consider a standard setup consisting of an agent inter-
acting with an environment in discrete finite timesteps. In
our setting, the purpose of the agent is to recommend suit-
able prompt forms for human experts. At each timestep t
the agent receives an observation ot, takes an action at and
receives a scalar reward rt. In general, the environment
may be partially observed so that the entire history of the
observation, action pairs st = (o1, a1, . . . , at−1, ot) may
be required to describe the state.

An agent’s behavior is defined by a policy, π, which
maps states to a probability distribution over the actions
π : S → P(A). We model it as a Markov decision process
with a state space S, action space A, an initial state distri-
bution p (s1), transition dynamics p (st+1 | st, at), reward
function r (st, at), and instantiate it as follows:

State space. The state at timestep t can be represented as
a three-tuple St = (It, Pt−1, Tt), where It ∈ RH×W×C

is the medical image slice input at time step t, Pt−1 ∈
RH×W×K represents the segmentation logits from the pre-
vious time step t − 1 (where K represents the number of
segmentation classes, which in this case is 2), and Tt is a
set of interaction prompts provided before time step t. We
consider three types of interaction prompts at each timestep:
forehead point with label 1, background point with label 0,
and bounding box.

Action space. The action space A is a set of interactive
forms provided by human experts at each time step. It is
represented as a set of integers A = {0, 1, 2, 3}, where 0
denotes selecting the forehead point, 1 denotes accessing
the background point, 2 denotes the center point, which is
defined as the point farthest from the boundary of the error
regions, and 3 denotes selecting the bounding box. At each
time step, the agent chooses an action from the action space
A to assist human experts with their interactions with SAM.

Reward function. At each step t, the difference between
the current DICE score (Dice, 1945), dice(Pt, Y ) and the
previous DICE score, dice(Pt−1, Y ), is calculated as the
reward value Rt:

Rt = dice(Pt, Y )− dice(Pt−1, Y ),

where Y is the ground truth, dice(Pt, Y ) represents the
DICE score between the current predicted result Pt and the
ground truth, and dice(Pt−1, Y ) represents the DICE score

between the previous predicted result and the ground truth.

In summary, as shown in Figure 2, the whole process is
as follows, the intelligence based on the image, the current
segmentation probability and the prompt given by the doctor,
according to the strategy pi gives the recommended prompt
form, and then the doctor gives the corresponding prompt to
SAM according to this, updates the style probability, and the
change of the segmentation result forms the reward feedback
to the intelligence.

In addition, the return from a state is defined as the dis-
counted cumulative reward Rt =

∑T
i=t γ

(i−t)r (si, ai)
with a discounting factor γ ∈ [0, 1]. Temporally-extended
prompts optimization is then aim to learn a policy that
maximizes the expected return from the start distribution
J = Eri,si∼E,ai∼π [R1]. We denote the discounted state
visitation distribution for a policy π as ρπ .

3.2. Learning the TEPO Agent with RL

Before introducing specific RL algorithms to obtain the
optimal temporarily-extended prompt, we first introduce
some notations. The action-value function is used in many
RL algorithms. It describes the expected return after taking
an action at in state st and thereafter following policy π :

Qπ (st, at) = Eri≥t,si>t∼E,ai>t∼π

[
Rt | st, at

]
, (1)

where E denotes the environment which determines the
reward and the next state, and Rt is the return term.

Additionally, many approaches in RL make use of the recur-
sive relationship known as the Bellman equation:

Qπ (st, at) = Ert,st+1∼E,at+1∼π

[
r (st, at)+

γQπ (st+1, at+1)
] (2)

In this paper, we adopt deep Q-network (DQN) (Mnih et al.,
2013; 2015) to instantiate the RL framework and learn the
TEPO agent. Q-learning (Watkins & Dayan, 1992), as the
core module of DQN, is a commonly-used, off-policy RL
algorithm, uses the greedy policy µ(s) = argmaxa Q(s, a).
DQN adapts the Q-learning in order to make effective use
of large neural networks as action-value function approxi-
mators. In order to scale Q-learning, DQN introduces two
major changes: the use of a replay buffer, and a separate tar-
get network for calculating yt. In off-policy reinforcement
learning, a replay buffer is a data structure used to store
experiences encountered by an agent during its interactions
with the environment. By storing past experiences, DQN
can mitigate the issues of non-stationarity and correlation
of consecutive samples, improving the convergence and
robustness of the learned policies.

During the training process, off-policy algorithm DQN
randomly samples batches of experiences from the replay
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buffer, which are then used to update the agent’s policy and
value functions. By storing experiences in a replay buffer,
off-policy methods can more efficiently use each experience
for multiple updates, reducing the variance in the updates
and improving sample efficiency.

In this paper, we consider function approximators parame-
terized by θQ, which we optimize by minimizing the loss:

L
(
θQ

)
= Est∼ρβ ,at∼β,rt∼E

[(
Q
(
st, at | θQ

)
− yt

)2]
,

(3)
where

yt = r (st, at) + γQ̂
(
st+1, µ (st+1) | θQ

)
,

and Q̂ is the target network. The target network’s parameters
are not trained, but they are periodically synchronized with
the parameters of the main Q-network.

4. Experiment
This section provides an evaluation of the proposed TEPO
on the BraTS2020 benchmark, which is a prevalent
dataset used for MIS tasks. We aim to address the following
key questions, and the following evaluation will focus on
answering these questions comprehensively, i.e.,

a) Does SAM with multi-step interaction outperform SAM
with single-step interaction?

b) Can the policies learned by the TEPO algorithm outper-
form the rule-based policies?

c) What strategies can be learned from TEPO?

d) How stable are the strategies learned by TEPO?

4.1. Dataset and Training Details

SAM requires 2D images as input and 3D images are con-
ventionally often annotated by viewing them in slices, we
adopt the practice of slicing the 3D magnetic resonance
scans into axial slices, a method commonly used in related
research efforts (Wolleb et al., 2022).

To evaluate the effectiveness of TEPO in the context of
multi-step interaction, we carefully selected slices with suf-
ficiently large foregrounds in the image. Specifically, we
segment the Whole Tumor (WT) from the FLAIR images
and choose slices that contain a minimum of 256 foreground
pixel points for analysis. This carefully curated dataset en-
ables accurate evaluation of the performance and potential
of TEPO in future applications in MIS.

The dataset for evaluation comprised a total of 369 patients.
We split the dataset into three subsets: the training set evalu-
ated 319 patients and included 17, 396 slices; the validation
set consisted of 20 patients, corresponding to 1, 450 slices;
and the test set included 20 patients with 1, 389 slices.

We crop the images to 200× 150, implement random flip,
rotate, add noise, affine transform data augmentation to the
training dataset, and then rescale the intensity values. We
train for 100 epochs, and in each epoch, 10, 000 steps are
sampled, and the Q network of TEPO is updated 100 times.
The model is trained with a learning rate of 1e−3 for the
Adam optimizer and a batch size of 64.

4.2. Main Results

The performance of the proposed TEPO algorithm is eval-
uated on the BraTS2020 dataset for medical image seg-
mentation tasks and compared with three rule-based policy
baselines: the one-step Oracle agent, the random agent, and
the alternately changing agent. The one-step Oracle agent
is an optimal decision-making agent that has access to com-
prehensive information and can observe the reward after
adapting various interaction forms. This allows it to achieve
the highest accuracy in a single step and to explore effi-
cient interaction strategies for the given task. The random
agent, on the other hand, uniformly samples actions from
available action sets and can be used to simulate clinicians
without any preference for any particular interaction form
for the task at hand. The alternately changing agent applies
a policy that alternately chooses the forehead point and the
background point.

We conduct training on several different reinforcement
learning policies with varying horizon settings (N =
{2, 3, 5, 7, 9}) and evaluate the agents’ performance through
the dice score, computed using a ground truth mask and
measurements. At each timestep, the agent first chooses
an action to indicate what form of interaction is required.
To simulate a clinician’s behavior, we use rules consisting
of choosing specific positions, such as the forehead, back-
ground, and center, and drawing bounding boxes around
the forehead region. Specifically, we select the forehead,
background, and center points that are farthest from the
boundaries of the false negative, false positive, and error
regions, respectively. For the bounding box, we extend the
forehead region by 10 pixels and draw a rectangle.

The comparison of the performance of various interaction
strategies is evaluated with respect to the number of interac-
tions. As shown in Figure 3, the different lines correspond
to the different agents’ performance. “TEPO-X” indicates
that the agent is trained in the X-step interaction scenario.
For example, “TEPO-2” means a two-step scenario. “Ran-
dom” denotes the random agent, “Alternately” denotes the
alternately changing agent, and “1-step Oracle” denotes the
one-step Oracle agent. We will use the same labeling con-
vention throughout the paper unless noted otherwise. It is
worth noting that we train in different interaction step sce-
narios, but in testing, we use 9-step interactions to find out
comprehensive performances.
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Table 1: Action selection preferences and quantitative segmentation performances for TEPO policies. Labels used in the
paper include “Fore” for the forehead point form, “Back” for the background point form, “Center” for the center point form,
and “Bbox” for the bounding box form. These labels will be consistently used throughout the paper. In addition, The highest
dice in each step we indicate with bolded.

Step TEPO-2 TEPO-3 TEPO-5 TEPO-7 TEPO-9
Action Dice < −0.1 Action Dice < −0.1 Action Dice < −0.1 Action Dice < −0.1 Action Dice < −0.1

1 Bbox (100.00%) 0.6901± 0.2094 0 Center (100.00%) 0.4658± 0.2877 0 Center (100.00%) 0.4658± 0.2877 0 Center (100.00%) 0.4658± 0.2877 0 Center (100.00%) 0.4658± 0.2877 0
2 Fore (99.57%) 0.6930± 0.1758 95 Bbox (94.96%) 0.7035± 0.1882 54 Center (62.35%) 0.6472± 0.2316 117 Bbox (85.67%) 0.6981± 0.1965 56 Center (100.00%) 0.6211± 0.2535 177
3 Fore (99.78%) 0.6937± 0.1694 14 Center (98.85%) 0.7611± 0.1687 44 Center (86.54%) 0.7369± 0.1926 102 Center (79.34%) 0.7552± 0.1720 56 Center (100.00%) 0.7192± 0.2131 153
4 Fore (99.71%) 0.6932± 0.1692 2 Center (99.14%) 0.7845± 0.1670 72 Center (95.10%) 0.7782± 0.1665 103 Center (90.78%) 0.7822± 0.1690 65 Center (100.00%) 0.7707± 0.1711 167
5 Fore (99.93%) 0.6940± 0.1693 0 Center (99.78%) 0.8026± 0.1553 73 Center (97.48%) 0.8021± 0.1577 85 Center (93.38%) 0.7991± 0.1612 62 Center (100.00%) 0.7990± 0.1583 123
6 Fore (99.86%) 0.6940± 0.1693 0 Center (100.00%) 0.8198± 0.1441 46 Center (99.57%) 0.8190± 0.1439 62 Center (94.89%) 0.8137± 0.1520 53 Center (100.00%) 0.8175± 0.1452 86
7 Fore (99.86%) 0.6940± 0.1694 0 Center (99.86%) 0.8263± 0.1409 47 Center (99.64%) 0.8288± 0.1375 48 Center (95.39%) 0.8240± 0.1424 40 Center (100.00%) 0.8302± 0.1390 58
8 Fore (99.86%) 0.6940± 0.1694 0 Center (100.00%) 0.8332± 0.1367 45 Center (99.71%) 0.8372± 0.1346 44 Center (95.82%) 0.8316± 0.1370 45 Center (100.00%) 0.8394± 0.1324 51
9 Fore (99.93%) 0.6940± 0.1694 0 Center (100.00%) 0.8362± 0.1378 44 Center (99.64%) 0.8421± 0.1322 42 Center (95.61%) 0.8342± 0.1380 41 Center (100.00%) 0.8449± 0.1307 51

Table 2: Action selection preferences and quantitative seg-
mentation performances for rule-based policies.

Step Random Alternately
Action Dice < −0.1 Action Dice < −0.1

1 Center (26.78%) 0.4129 ± 0.3417 0 Fore (100.00%) 0.4658 ± 0.2877 0
2 Center (29.30%) 0.5723 ± 0.2947 121 Back (100.00%) 0.6010 ± 0.2691 98
3 Fore (30.67%) 0.6561 ± 0.2562 141 Fore (100.00%) 0.6460 ± 0.2470 207
4 Fore (33.48%) 0.7072 ± 0.2260 123 Back (100.00%) 0.7280 ± 0.2067 98
5 Back (32.04%) 0.7354 ± 0.2094 115 Fore (100.00%) 0.7332 ± 0.2098 172
6 Fore (33.48%) 0.7571 ± 0.1943 89 Back (100.00%) 0.7823 ± 0.1730 59
7 Center (33.33%) 0.7818 ± 0.1727 66 Fore (100.00%) 0.7840 ± 0.1777 111
8 Back (33.33%) 0.7956 ± 0.1627 50 Back (100.00%) 0.8138 ± 0.1512 27
9 Fore (33.55%) 0.8052 ± 0.1568 39 Fore (100.00%) 0.8052 ± 0.1652 92

Figure 3: The performance improvement of different in-
teractive medical segmentation methods at different inter-
action steps. All these test results are performed on the
BraTS2020 dataset.

4.2.1. QUANTITATIVE EXPERIMENTAL ANALYSIS

Q#a: Does SAM in multi-step interaction mode outper-
form SAM in single-step interaction mode? As illus-
trated in Figure 3, the TEPO-2 agent stays the same after
the third round, this is because in our experiments, if the
shortest distance of all points from the edge in the corre-
sponding region is less than two pixels, then the user does
not interact anymore. Table 1 indicates that the TEPO-2 pol-
icy predominantly selects the forehead point starting from
step two. However, the false negative region is too small to
click, so the TEPO-2 policy stops interacting at step five for
all test cases. Conversely, the performance of other multi-
step policies improves with an increase in the number of
interactions, showcasing that SAM can be enhanced through

multiple rounds of interactions. Moreover, expect TEPO-2,
other policies perform better than the one-step Oracle agent,
implying that multi-step interactions are more effective for
MIS than the single-step interaction mode.

Q#b: Can the policies learned by the TEPO algorithm
outperform the rule-based policies? The experimental
results in Figure 3 indicate that the TEPO-2 policy performs
better than random and alternating selection methods dur-
ing the initial two interactions. Moreover, the performance
of all other RL-based policies is superior to rule-based ap-
proaches. These findings provide evidence that the TEPO
algorithm significantly boosts the efficacy of SAM in inter-
active medical scenarios, even in zero-shot mode.

Q#c: What strategies can be learned from the TEPO
algorithm? As the TEPO algorithm is trained under dif-
ferent interaction round scenarios, the learned strategies
exhibit variations, as summarized in Table 1. TEPO-2 em-
ploys a straightforward strategy: selecting the bounding box
in the first step and the forehead point in subsequent ones.
This strategy performs well in the initial two steps, with the
performance in the first step nearing that of the one-step
Oracle agent that adopts an ideal strategy. TEPO-3 applies a
nearly deterministic strategy that chooses the bounding box
at the second step and chooses center points at other steps.
Moreover, TEPO-5 and TEPO-7 use more uncertain strate-
gies that primarily employ the center point but may resort to
alternative ones in the second and third steps. TEPO-9 finds
a trivial strategy of choosing the center point at each step,
resulting in the best performance in multiple interactions.

Q#d: How stable are the strategies learned by TEPO?
One issue that may affect the performance of TEPO is inter-
active misunderstanding, where user interactions result in
reduced segmentation dice scores. In this study, we consider
interactive misunderstandings when the segmentation dice
score decreases by over 0.1. We analyze the occurrence
of interactive misunderstandings for different strategies on
our test data, as presented in Table 1 and Table 2. For a
more intuitive comparison, we plot the number of interactive
misunderstandings for each strategy at different interaction

6
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Figure 4: Visualization of strategies and results of different strategies on the same medical image. The green pentagram
indicates the foreground, the red pentagram indicates the background, and the green box indicates the bounding box.

steps in Figure 5. As TEPO-2 only applies to the initial
two interactions, we exclude it from the plot. Resultantly,
the findings indicate that TEPO-3, TEPO-5, and TEPO-7
exhibit superior stability and performance due to fewer mis-
understandings than the random and alternating agents.

4.2.2. QUALITATIVE EXPERIMENTAL ANALYSIS

To investigate the effectiveness of different strategies, we
conducted a qualitative analysis and visualized their per-
formance on a single medical image in Fig.4. The first
column shows the raw image, the middle columns show

the interaction processes and the segmentation results, and
the last column displays the ground truth. Among them,
the effective interaction of the TEPO-2 is only twice, so
the final style effect is relatively poor. Among other strate-
gies, only the TEPO-9 and alternately changing agent used
point-based interaction, reducing the relative efficiency of
the error area, but TEPO-9 has an equally good final effect
as the strategy with the bounding box. TEPO-3, TEPO-5,
and TEPO-7 adopted consistent strategies, where the bound-
ing box was selected in the second interaction and center
points were selected in other interactions.

7
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Figure 5: Comparison of the number of cases with increased
dice score less than −0.1.

Overall, our results reveal that SAM cannot accurately
achieve segmentation in a single interaction without be-
ing properly tuned. With multiple rounds of interaction, it
can achieve considerable results. Moreover, the strategies
learned by TEPO demonstrate better segmentation perfor-
mance compared to rule-based strategies.

5. Conclusion
This paper focuses on assessing the potential of SAM’s
zero-shot capabilities within the interactive medical image
segmentation (IMIS) paradigm to amplify its benefits in the
medical image segmentation (MIS) domain. We propose an
RL mechanism named temporally-extended prompts opti-
mization (TEPO) that learns to provide a prompt form that
maximizes segmentation accuracy in multi-step interaction
scenarios. The experimental results on the Brats2020
benchmark demonstrate that SAM is prompt-sensitive, and
the TEPO agent can further improve its zero-shot capabil-
ity in the MIS context. The study shows that the proposed
TEPO can significantly reduce the number of interactive
misunderstandings, which means more robust and stable in
providing accurate segmentation in medical images. These
findings make a valuable contribution to the development
of advanced MIS techniques, showcasing the potential effi-
cacy of prompts optimization which expands the zero-shot
capability of foundation models like SAM.
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