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Abstract

In this work, we substantiate the idea of cogni-
tive models as simulators, which is to have AI
systems interact with, and collect feedback from,
cognitive models instead of humans, thereby mak-
ing the training process safer, cheaper, and faster.
We leverage this idea in the context of learning
a fair behavior toward a counterpart exhibiting
various emotional states — as implicit human
feedback. As a case study, we adopt the Ultima-
tum game (UG), a canonical task in behavioral
and brain sciences for studying fairness. We show
that our reinforcement learning (RL) agents learn
to exhibit differential, rationally-justified behav-
iors under various emotional states of their UG
counterpart. We discuss the implications of our
work for AI and cognitive science research, and
its potential for interactive learning with implicit
human feedback.

1. Introduction
Recent years have witnessed artificial intelligence (AI) sys-
tems with remarkable abilities (e.g., Devlin et al., 2018;
Goyal et al., 2021), whose success critically depends on
having access to huge amounts of training data. Exam-
ples include the famous Google BERT language model pre-
trained on 800M words from BooksCorpus and 2, 500M
words from Wikipedia (Devlin et al., 2018), the DeepMind
AlphaGo system trained on over 30M expert moves (Silver
et al., 2016), the OpenAI GPT-3 model pre-trained on 300
billion tokens (Brown et al., 2020), and the recent Face-
book SEER image recognition model trained on one billion
images from Instagram photos (Goyal et al., 2021).
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Similarly, in reinforcement learning (RL), agents need to
have many interactions with their environment to collect
feedback in the form of rewards (Sutton & Barto, 2018).
This is especially challenging in settings where the envi-
ronment consists of human agents, resulting in these inter-
actions being expensive, time-consuming, and potentially
unsafe — thus exacerbating the training process. Could we
instead use cognitive models, as a proxy for humans, to
address this issue?

In this work, we substantiate the idea of cognitive models as
simulators, which is to have AI systems interact with, and
collect feedback from, cognitive models instead of humans,
thereby making the training process safer, cheaper, and
faster. Focusing on emotions as a form of implicit human
feedback, we leverage this idea in the context of learning a
fair behavior toward a counterpart exhibiting various emo-
tional states.

A substantial body of work in emotion research shows that
people display emotions as a means of communication (e.g.,
Tronick, 1989; Parr et al., 2005; Planalp et al., 2006), serving
as implicit feedback that clues others as to how they should
regulate their behavior. For example, when someone we
care about displays sadness, we are likely to know that we
need to provide support (Planalp et al., 2006).

As a case study, we adopt the Ultimatum game (UG), a
canonical task in behavioral and brain sciences for studying
fairness (e.g., Sanfey, 2009; Battigalli et al., 2015; Vavra
et al., 2018; Sanfey et al., 2003; Xiang et al., 2013; Chang
& Sanfey, 2013). As we show, our RL agents learn to ex-
hibit differential, rationally-justified behaviors under various
emotional states of a simulated UG Responder (see Section
2 for an explanation of how UG works).

We begin by describing UG and presenting an overview of
the relevant psychological findings on the role of emotions
in UG (Section 2). We then discuss in Section 3 a cognitive
model of UG Responder under a variety of emotional states
(Lizotte et al., 2021; Nobandegani et al., 2020), and subse-
quently present our RL training results under various UG
Responder’s emotional states (Section 4). We then discuss
relevant past work (Section 5), and conclude by discussing
the implications of our work for AI and cognitive science re-
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search, and its potential for interactive learning with implicit
human feedback (Section 6).

2. UG and the Role of Emotions in UG
The Ultimatum game (UG; Güth et al., 1982) is a canonical
task for studying fairness, and has been extensively studied
in psychology (e.g., Sanfey, 2009; Battigalli et al., 2015;
Vavra et al., 2018), neuroscience (Sanfey et al., 2003; Xiang
et al., 2013; Chang & Sanfey, 2013), philosophy (Guala,
2008), and behavioral economics (e.g., Güth et al., 1982;
Thaler, 1988; Camerer & Thaler, 1995; Fehr & Schmidt,
1999; Sutter et al., 2003; Camerer & Fehr, 2006). UG has a
simple design: Two players, Proposer and Responder, must
agree on how to split a sum of money. Proposer makes
an offer. If Responder accepts, the deal goes through; if
Responder rejects, neither player gets anything. In both
cases, the game is over.

An extensive body of empirical work has established that
UG Proposers predominantly respect fairness by offering
about 50% of the endowed amount, and that this split is
almost invariably accepted by UG Responders (see Camerer,
2011). Relatedly, UG Responders often reject offers below
30%, presumably as retaliation for being treated unfairly
(Güth et al., 1982; Thaler, 1988; Güth & Tietz, 1990; Bolton
& Zwick, 1995; Nowak et al., 2000; Camerer & Fehr, 2006).

Substantial empirical work has revealed that induced emo-
tions strongly affect UG Responder’s accept/reject behavior,
with positive emotions increasing the chance of low offers
being accepted (e.g., Riepl et al., 2016; Andrade & Ariely,
2009), and negative emotions decreasing the chance of low
offers being accepted (e.g., Bonini et al., 2011; Harlé &
Sanfey, 2010; Liu et al., 2016; Moretti & Di Pellegrino,
2010; Vargas et al., 2019). Experimentally, these emotions
are often induced by a movie clip or recall task.

3. A Cognitive Model of UG Responder
Recently, Nobandegani et al. (2020) presented a cognitive
model of UG Responder, called sample-based expected util-
ity (SbEU). SbEU provides a unified account of several
disparate empirical findings in UG (i.e., the effects of expec-
tation, competition, and time pressure on UG Responder),
and also explains the effect of a wide range of emotions on
UG Responder (Lizotte et al., 2021).

Nobandegani et al.’s cognitive model rests on two main
assumptions. First, UG Responder uses SbEU to estimate
the expected-utility gap between their expectation and the
offer, i.e., E[u(offer)−u(expectation)], where u(·) denotes
Responder’s utility function. If this estimate is positive —
indicating that the offer made is, on average, higher than
Responder’s expectation — Responder accepts the offer;

otherwise, Responder rejects the offer. This assumption is
supported by substantial empirical evidence showing that
Responder’s expectation serves as a reference point for sub-
jective valuation of offers (Sanfey, 2009; Battigalli et al.,
2015; Vavra et al., 2018; Xiang et al., 2013; Chang & Sanfey,
2013).

The second assumption is that negative emotions elevate
loss-aversion while positive emotions lower loss-aversion
(Lizotte et al., 2021). Again, this assumptions is supported
by mounting empirical evidence (e.g., De Martino et al.,
2010; Sokol-Hessner et al., 2015; 2009) suggesting that
emotions modulate loss-aversion — the tendency to over-
weight losses as compared to gains (Kahneman & Tverskey,
1979).

Concretely, SbEU assumes that an agent estimates expected
utility:

E[u(o)] =
∫

p(o)u(o)do, (1)

using self-normalized importance sampling (Nobandegani
et al., 2018; Nobandegani & Shultz, 2020b;c), with its im-
portance distribution q∗ aiming to optimally minimize mean-
squared error (MSE):

Ê =

∑s
i=1 wiu(oi)∑s

j=1 wj
, ∀i : oi ∼ q∗, wi =

p(oi)

q∗(oi)
, (2)

q∗(o) ∝ p(o)|u(o)|

√
1 + |u(o)|

√
s

|u(o)|
√
s

. (3)

MSE is a standard measure of estimation quality, widely
used in decision theory and mathematical statistics (Poor,
2013). In Eqs. (1-3), o denotes an outcome of a risky gamble,
p(o) the objective probability of outcome o, u(o) the subjec-
tive utility of outcome o, Ê the importance-sampling esti-
mate of expected utility given in Eq. (1), q∗ the importance-
sampling distribution, oi an outcome randomly sampled
from q∗, and s the number of samples drawn from q∗.

SbEU has so far explained a broad range of empirical find-
ings in human decision-making, e.g., the fourfold patterns
of risk preferences in both outcome probability and out-
come magnitude (Nobandegani et al., 2018), risky decoy
and violation of betweenness (Nobandegani et al., 2019c),
violation of stochastic dominance (Xia et al., 2022), vio-
lation of cumulative independence (Cao et al., 2022), the
three contextual effects of similarity, attraction, and compro-
mise (da Silva Castanheira et al., 2019), the Allais, St. Pe-
tersburg, and Ellsberg paradoxes (Nobandegani & Shultz,
2020b;c; Nobandegani et al., 2021), cooperation in Pris-
oner’s Dilemma (Nobandegani et al., 2019a), and human
coordination behavior in coordination games (Nobandegani
& Shultz, 2020a).
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4. Training RL Agents in UG
In this section, we substantiate the idea of cognitive mod-
els as simulators in the context of moral decision-making
(Haidt, 2007; Lapsley, 2018), by having RL agents learn
about fairness through interacting with a cognitive model of
UG Responder (Nobandegani et al., 2020), as a proxy for
human Responders, thereby making their training process
both less costly and faster.

To train RL Proposers, we leverage the broad framework of
multi-armed bandits in reinforcement learning (Katehakis
& Veinott, 1987; Gittins, 1979), and adopt the well-known
Thompson Sampling method (Thompson, 1933). Specif-
ically, we assume that RL Proposer should decide what
percentage of the total money T they are willing to offer
to SbEU Responder. For ease of analysis, here we assume
that RL Proposer chooses between a finite set of actions:
A = {0, T

10 ,
2T
10 , · · · ,

9T
10 , T}.

Algorithm 1 Thompson Sampling for UG Proposer
Initialize. ∀a ∈ A: Sa = 0 and Fa = 0
1: for i = 1, . . . , N
2: ∀a ∈ A compute:

sa = u(T − a)βa, βa ∼ Beta(Sa + 1, Fa + 1)
3: a∗ = argmaxa sa
4: Offer a∗ to SbEU Responder
5: if SbEU Responder accepts the offer then
6: Sa∗ = Sa∗ + 1
7: else
8: Fa∗ = Fa∗ + 1
9: end if

10: end for

In reinforcement learning terminology, RL Proposer learns,
through trial and error while striking a balance between
exploration and exploitation, which action a ∈ A yields the
highest expected reward. Here, we train RL Proposers using
Thompson Sampling, a well-established method in the RL
literature enjoying near-optimality guarantees (Agrawal &
Goyal, 2012; 2013); see Algorithm 1.

Algorithm 1 can be described in simple terms as follows. At
the start, i.e., prior to any learning, the number of times an
offer a ∈ A is so far accepted, Sa (S for success), and the
number of times it is rejected, Fa (F for failure), are both
set to zero. In each trial (for a total of N trials), an estimate
of expected reward for each offer a ∈ A is computed by
sampling from the corresponding distribution (Line 2), and
the offer with the highest expected reward estimate a∗ (Line
3) is then chosen by Proposer to be offered to SbEU Respon-
der (Line 4). If this offer is accepted by SbEU Responder,
the Sa parameter for that offer is incremented by one (Line
6); if rejected, the Fa parameter for that offer is instead
incremented by one (Line 8). In Algorithm 1, T is the total

amount of money to be split between Proposer and Respon-
der, u(·) is the subjective utility function of Responder, and
Beta(·, ·) is the Beta distribution.

Figure 1. Mean frequency of RL Proposer’s offers. The y-axis
indicates the mean frequency of each offer made by RL Proposer
to SbEU Responder up to current trial (x-axis), averaged over 10
RL Proposers. SbEU Responder is in a neutral emotional state. As
a visual aid, the dynamics for the first 200 trials are provided in a
smaller plot, located at the center.

In Figure 1, we simulate 10 RL Proposers, and report the
mean frequency of an offer being made to SbEU Responder
over the past trials, for a total of N = 10, 000 trials. As
can be seen, exercising a balance between exploration and
exploitation, RL Proposers eventually arrive at the decision
that they should be making a fair offer to SbEU Responder,
i.e., to split the total sum T equally between themselves and
Responder.

4.1. RL Proposer Meets Emotional Responder

Tapping into emotions as a form of implicit human feed-
back, here we bridge between the idea of cognitive models
as simulators and emotion research, by letting AI systems
interact with a cognitive model of people experiencing vari-
ous emotional states. Specifically, we pursue this idea in the
context of UG, and have RL Proposers interact with SbEU
Responders experiencing positive and negative emotional
states — as implicit human feedback.

A wealth of empirical research has revealed that the effect of
emotions on human decision-making is both substantial and
systematic (for reviews see, e.g., Phelps et al., 2014; Lerner
et al., 2015). More specifically, in the context of UG, a
growing body of empirical studies have shown that induced
emotions strongly affect UG Responder’s behavior, with
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a)

b)

Figure 2. Mean frequency of RL Proposer’s offers. The y-axis
indicates the mean frequency of each offer made by RL Proposer
to SbEU Responder up to current trial (x-axis), averaged over
10 RL Proposers. In (a) SbEU Responder is under a negative
emotional state, while in (b) SbEU Responder is under a positive
emotional state. As a visual aid, in each subplot, the dynamics
for the first 200 trials are provided in a smaller plot, located at the
center.

positive emotions (e.g., happiness) increasing the chance of
low offers being accepted (e.g., Riepl et al., 2016; Andrade
& Ariely, 2009), and negative emotions (e.g., disgust, anger,
and sadness) decreasing the chance of low offers being ac-
cepted (e.g., Bonini et al., 2011; Harlé & Sanfey, 2010;
Liu et al., 2016; Moretti & Di Pellegrino, 2010; Vargas
et al., 2019). Hence, it would be rational for UG Proposer
(from the perspective of maximizing their expected reward)
to make larger offers to Responders experiencing negative
emotions, and, conversely, to make smaller offers to Re-
sponders experiencing positive emotions.

Interestingly, under the broad and empirically well-
supported assumption that emotions modulate loss-aversion
(e.g., De Martino et al., 2010; Sokol-Hessner et al., 2015;
2009), Nobandegani et al.’s (2020) SbEU model explains
the effect of a wide range of emotions on human UG Re-
sponder (Lizotte et al., 2021). Next, we train RL Proposers,
using Thompson Sampling (see Algorithm 1), to learn how
to interact with SbEU Responders experiencing positive or
negative emotional states.

In Figure 2, we simulate 10 RL Proposers, and report the
mean frequency of an offer being made to SbEU Respon-
der over the past trials, for a total of N = 100, 000 trials.
In Figure 2(a), SbEU Responder is under a negative emo-
tional state, and, in Figure 2(b), SbEU Responder is under
a positive emotional state. As can be seen, RL Proposers
eventually arrive at the decision that they should be mak-
ing a larger offer (60%) when Responder is experiencing
a negative emotional state (Figure 2(a)), and, conversely,
should be making a smaller offer (40%) when Responder is
experiencing a positive emotional state (Figure 2(b)).

As such, taking into account the emotional state of their UG
counterpart, which serves as an important source of implicit
human feedback, RL proposers learn to exhibit differential,
rationally-justified behaviors under various emotional states
of their UG Responder, i.e., neutral (Figure 1), negative
(Figure 2(a)), and positive (Figure 2(b)).

5. Related Work
Past work has leveraged data generated by cognitive models,
and more broadly, models of human behavior, to train AI
systems (Bourgin et al., 2019; Carroll et al., 2019; Trafton
et al., 2020; Zhang et al., 2021; Sense et al., 2022; Hu et al.,
2022).

Bourgin et al. (2019) focused on the problem of predicting
human decisions when choosing between risky gambles,
and leveraged the data generated by a cognitive model of
human decision-making (BEAST; Erev et al., 2017) to train
a neural-network model achieving state-of-the-art perfor-
mance in predicting human risky decision-making. Specifi-
cally, Bourgin et al. (2019) used the synthetic data generated
by BEAST to pretrain their neural-network model, allowing
it to start off from a good initialization.

Trafton et al. (2020) used an extension of a well-known cog-
nitive model, (ACT-R; Anderson et al., 2004), to generate
synthetic data which would then be used to train a deep
neural-network model predicting human actions in a super-
visory control task. Their trained neural-network showed
superior predictive performance compared to a classifier
trained solely on (limited) empirical data.
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Sense et al. (2022) used a cognitive model of human mem-
ory, (PPE; Jastrzembski et al., 2006) to engineer timing-
related input features for a gradient-boosted decision trees
(GBDT) model. The resulting PPE-enhanced GBDT out-
performed the default GBDT, especially under conditions
in which limited data were available for training.

Carroll et al. (2019) focused on the problem of human-AI
coordination, in an environment based on the popular game
Overcooked. Carroll et al. evaluated the performance of
agents trained via self-play and population-based training,
and showed that these agents performed well when paired
with themselves, but when paired with a human model, they
were significantly worse than agents trained to play with the
human model. Carroll et al. developed their human model
by behavioral cloning (Bain & Sammut, 1995).

In subsequent work, Hu et al. (2022) considered the prob-
lem of human-AI coordination in partially observed environ-
ments, and developed a three-step algorithm that achieved
strong performance in coordinating with real humans in the
Hanabi benchmark (Bard et al., 2020). Hu et al. (2022) used
a regularized search algorithm and behavioral cloning to
produce a human model and then integrated a policy reg-
ularization method into reinforcement learning to train a
human-like best response to the human model.

Perhaps the closest work to our work is a short, position pa-
per by Zhang et al. (2021) in the domain of human-computer
interaction. Zhang et al. proposed using cognitive models
to pretrain RL agents before they are applied to real human
users, thereby endowing those RL agents with a good initial
policy — dubbed warm start RL agents. Zhang et al. re-
viewed two case studies; one was a mobile notification
app motivating physical exercise in a human user, and the
other was a driving assist app that helps human drivers to
keep lanes. As a model of human user with which the RL
agent (i.e., the app) interacts, Zhang et al. used a dynamic
Bayesian network in the former case, and ACT-R, in the
latter.

To our knowledge, ours is the first interactive learning work
that uses cognitive models to train RL agents that tap into
human’s display of emotions, as an important source of
implicit human feedback.

6. Discussion
To achieve desirable performance, current AI systems often
require huge amounts of training data. This is especially
problematic in domains where collecting data is both expen-
sive and time-consuming, e.g., where AI systems require
many interactions with humans, collecting feedback from
them. In this work, we substantiate the idea of cognitive
models as simulators, which is to have AI systems inter-
act with, and collect feedback from, cognitive models as

a proxy for humans, thereby making their training process
safer, cheaper, and faster.

Focusing on emotions as an important source of implicit hu-
man feedback, we leverage the idea of cognitive models as
simulators in the context of learning a fair behavior toward
a counterpart exhibiting various emotional states. A sub-
stantial body of work in emotion research shows that people
display emotions as a means of communication (e.g., Tron-
ick, 1989; Parr et al., 2005; Planalp et al., 2006), serving
as implicit feedback that clues others into how they should
regulate their behavior.

As a case study, we adopt the Ultimatum game (UG), a
canonical task in behavioral and brain sciences for studying
fairness (e.g., Sanfey, 2009; Battigalli et al., 2015; Vavra
et al., 2018; Sanfey et al., 2003; Xiang et al., 2013; Chang &
Sanfey, 2013). As a cognitive model, we use sample-based
expected utility (SbEU), a psychological model that ex-
plains a wide range of empirical findings on UG Responders
(Nobandegani et al., 2020; Lizotte et al., 2021). As an AI
system, we train RL Proposers using Thompson Sampling, a
well-known method in the multi-armed bandits literature, en-
joying near-optimality guarantees (Agrawal & Goyal, 2012;
2013). As we show, our RL agents learn to exhibit differen-
tial, rationally-justified behaviors under various emotional
states of their simulated UG Responder, making larger of-
fers when Responder is more likely to reject low offers (due
to experiencing negative emotions) and, conversely, making
smaller offers when Responder is less likely to reject low
offers (due to experiencing positive emotions).

Although here we focused on the three broad categories of
neutral, negative, and positive emotions, SbEU allows for
simulating UG Responder under various nuanced emotional
states (e.g., sadness, anger, disgust, happiness; Lizotte et al.,
2021), thus permitting a more specialized training of RL
Proposers.

Recent success stories in AI, e.g., AlphaGo and particularly
self-play (Silver et al., 2016; 2017), clearly demonstrate
the significant role that having access to a simulator of the
environment would play in efficient training of AI systems.
The idea of cognitive models as simulators substantiated in
this work is yet another step in the direction of leveraging
simulators of the environment — by using cognitive models
as a proxy for people — in the service of making the training
of AI systems safer, cheaper and faster. As such, the idea of
cognitive models as simulators presents an important way
for computational cognitive science to contribute to AI.

Interestingly, as cognitive models allow individual-level
modeling of humans, taking into account individual-level
differences among people (e.g., their emotional states), the
idea of cognitive models as simulator paves the way for
personalized training of AI agents interacting with human
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users.

Additionally, as cognitive process models serve as proposals
for a causal generative model of behavior, they could be ef-
fectively used to simulate interventions and counterfactuals,
all of which improves generalization of AI training.

Although here we presented the idea of cognitive models as
simulators as a way of making the training of AI systems
more efficient, it could also be seen as a broad cognitive
framework for how people might be choosing their strategies
in multi-agent environments by mentalizing about other
agents. As such, the idea of cognitive models as simulators
could potentially serve as a broad framework for theorizing
about, and mathematically identifying, mental processes by
which people choose their strategies when interacting with
other agents. Hence, this “cognitive” reconceptualization
of cognitive models as simulators has potential to make
contributions to computational cognitive science.

Additionally, a strong reading of this cognitive reconcep-
tualization takes the AI systems learning from interacting
with mental models as a proposal for how people might be
choosing their strategy in multi-agent environments, thus
presenting an important way for AI to contribute to compu-
tational cognitive science.

From this perspective, the Thompson Sampling algorithm
presented in Section 4 for training RL Proposers could serve
as a process-level proposal for how human Proposers might
be choosing their offer: by simulating UG Responder us-
ing a mental model of UG Responder and learning from
mentally interacting with that model, here implemented by
SbEU (Nobandegani et al., 2020). Nonetheless, human Pro-
posers might be using a much simpler mental model of their
human Responder as compared to SbEU, and would presum-
ably start with much stronger prior beliefs (i.e., inductive
biases) about the expected reward of each of their strate-
gies — instead of the uniformly distributed Beta(1, 1) prior
used in Algorithm 1. Future work should more extensively
investigate this process-level proposal.

Also, this cognitive reconceptualization is consistent with
substantial work on both people’s intuitive psychology and
human strategic decision-making (e.g., Jern et al., 2017;
Jara-Ettinger et al., 2016; Nagel, 1995; Baker et al., 2009;
Camerer et al., 2004), broadly assuming that people have
a mental model of other agents and use that model to both
interpret other agents’ behavior and decide how to behave
when interacting with those agents.

To our knowledge, ours is the first interactive learning work
that uses cognitive models to train RL agents that tap into
human’s display of emotions, as an important source of
implicit human feedback. We see our work as a step in
the direction of developing AI systems that regulate their
interaction with humans depending on the emotional state

of their human counterparts.
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