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Abstract
We consider the problem of Imitation Learn-
ing (IL) by actively querying noisy expert for
feedback. While imitation learning has been
empirically successful, much of prior work as-
sumes access to noiseless expert feedback which
is not practical in many applications. In fact,
when one only has access to noisy expert feed-
back, algorithms that rely on purely offline data
(non-interactive IL) can be shown to need a pro-
hibitively large number of samples to be success-
ful. In contrast, in this work, we provide an in-
teractive algorithm for IL that uses selective sam-
pling to actively query the noisy expert for feed-
back. Our contributions are twofold: First, we
provide a new selective sampling algorithm that
works with general function classes and multiple
actions, and obtains the best-known bounds for
the regret and the number of queries. Next, we ex-
tend this analysis to the problem of IL with noisy
expert feedback and provide a new IL algorithm
that makes limited queries.

Our algorithm for selective sampling leverages
function approximation, and relies on an online
regression oracle w.r.t. the given model class to
predict actions, and to decide whether to query
the expert for its label. On the theoretical side, the
regret bound of our algorithm is upper bounded
by the regret of the online regression oracle, while
the query complexity additionally depends on the
eluder dimension of the model class. We comple-
ment this with a lower bound that demonstrates
that our results are tight. We extend our selec-
tive sampling algorithm for IL with general func-
tion approximation and provide bounds on both
the regret and the number of queries made to the
noisy expert. A key novelty here is that our regret
and query complexity bounds only depend on the
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number of times the optimal policy (and not the
noisy expert, or the learner) go to states that have
a small margin.

1. Introduction
From the classic supervised learning setting to the more
complex problems like interactive Imitation Learning (IL)
(Ross et al., 2011), high-quality labels or supervision is often
expensive and hard to obtain. Thus, one wishes to develop
learning algorithms that do not require a label for every
data sample presented during the learning process. Active
learning or selective sampling is a learning paradigm that
is designed to reduce query complexity by only querying
for labels at selected data points, and has been extensively
studied in both theory and in practice (Agarwal, 2013; Dekel
et al., 2012; Hanneke & Yang, 2021; Zhu & Nowak, 2022;
Cesa-Bianchi et al., 2005; Hanneke & Yang, 2015).

In this work, we study selective sampling and its application
to interactive Imitation Learning (Ross et al., 2011). Our
goal is to design algorithms that can leverage general func-
tion approximation and online regression oracles to achieve
small regret on predicting the correct labels, and at the same
time minimize the number of expert queries made (query
complexity). Towards this goal, we first study selective
sampling which is an online active learning framework, and
provide regret and query complexity bounds for general
function classes (used to model the experts). Our key results
in selective sampling are obtained by developing a connec-
tion between the regret of the online regression oracles and
the regret of predicting the correct labels. Additionally, we
bound the query complexity using the eluder dimension
(Russo & Van Roy, 2013) of the underlying function class
used to model the expert. We complement our results with
a lower bound indicating that a dependence on an eluder
dimension like complexity measure is unavoidable in the
query complexity in the worst case. In particular, we provide
lower bounds in terms of the star number of the function
class—a quantity closely related to the eluder dimension.
Our new selective sampling algorithm, called SAGE, can
operate under fairly general modeling assumptions, loss
functions, and allows for multiple labels (i.e., multi-class
classification).
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We then extend our selective sampling algorithm to the in-
teractive IL framework proposed by (Ross et al., 2011) to
reduce the query complexity. While the DAgger algorithm
proposed by (Ross et al., 2011) has been extensively used
in various robotics applications (e.g., Ross et al. (2013);
Pan et al. (2018)), it often requires a large number of ex-
pert queries. There have been some efforts on reducing the
expert query complexity by leveraging ideas from active
learning (e.g., (Laskey et al., 2016; Brantley et al., 2020)),
however, these prior attempts do not have theoretical guar-
antees on bounding expert’s query complexity. In this work,
we provide the first provably correct algorithm for inter-
active IL with general function classes, called , which not
only achieves strong regret bounds in terms of maximizing
the underlying reward functions, but also enjoys a small
query complexity. Furthermore, we note that operates un-
der significantly weaker assumptions as compared to the
prior works, like (Ross et al., 2011), on interactive IL. In
particular, we only assume access to a noisy expert, as
compared to the prior works that assume that the expert
is noiseless. In fact, for the noisy setting, we show that
one can not even hope to learn from purely offline expert
demonstrations unless one has exponentially in horizon H
many samples. Such a strong separation does not hold in
the noiseless setting.

Our bounds depend on the margin of the noisy expert, which
intuitively quantifies the confidence level of the expert. In
particular, the margin is large for states where the expert is
very confident in terms of providing the correct labels, while
on the other hand, the margin is small on the states where
the expert is less confident and subsequently provides more
noisy labels as feedback. Such kind of margin condition
was missing in prior works, like (Ross et al., 2011), which
assumes that the expert can provide confident labels every-
where. Additionally, we note that our margin assumption
is quite mild as we only assume that the expert has a large
margin under the states that could be visited by the noise-
less expert (however, the states visited by the learner, or by
following the noisy expert, may not have a small margin).

We then extend our results to the multiple expert setting
where the learner has access to M many experts/teachers
who may have different expertise at different parts of the
state space. In particular, there is no expert who can sin-
glehandedly perform well on the underlying environment,
but an aggregation of their policies can lead to good perfor-
mance. Such an assumption holds in various applications
and has been recently explored in continuous control tasks
like robotics and discrete tasks like chess and Minigrid (Beli-
aev et al., 2022). For illustration, consider the game of chess,
where we can easily find experts that have non-overlapping
skills, e.g. some experts may have expertise on how to
open the game, and other experts may have expertise in
endgames. In this case, while no single expert can perform

well throughout the game, an aggregation of their policies
can lead to a good strategy that we wish to compete with.

Similar to the single expert setting, we model the expertise
of the experts in multiple expert setting using the concept of
margins. Different experts have different margin functions,
capturing the fact that experts may have different expertise
at different parts of the state space. Prior work from (Cheng
et al., 2020) also considers multiple experts in IL and pro-
vides meaningful regret bounds, however, their assumption
on the experts is much stronger than us: they assume that for
any state, there at least exists one expert who can achieve
high reward-to-go if the expert took over the control start-
ing from this state till the end of the episode. Furthermore,
(Cheng et al., 2020) considers the setting where one can
also query for the reward signals, whereas we do not require
access to any reward signals.

2. Contributions and Overview of Results
Selective Sampling Online selective sampling models
the interaction between a learner and an adversary over T
rounds. At the beginning of each round of the interaction,
the adversary presents a context xt to the learner. After
receiving the context, the learner makes a prediction ŷt ∈
[K], where K denotes the number of actions. Then, the
learner needs to make a choice of whether or not to query
an expert who is assumed to have some knowledge about
the true label for all the presented contexts. The experts
knowledge about the true label is modeled via the ground
truth modeling function f⋆, which is assumed to belong to a
given function class F but is unknown to the learner. If the
learner decides to query for the label, then the expert will
return a noisy label yt sampled using f⋆. If the learner does
not query, then the learner does not receive any feedback in
this round. The learner makes an update based on the latest
information it has, and moves on to the next round of the
interaction. The goal of the learner is to compete with the
expert policy π⋆, that is defined using the experts model f⋆.
In the selective sampling setting, we care about two things:
the total regret of the learner w.r.t. the policy π⋆, and the
number of expert queries that the learner makes. Our key
contributions are as follows:

● We provide a new selective sampling algorithm (Algo-
rithm 1) that relies on an online regression oracle w.r.t.F
(where F is the given model class) to make predictions
and to decide whether to query for labels. Our algo-
rithm can handle multiple actions, adversarial contexts,
arbitrary model class F , and fairly general modeling as-
sumptions (that we discuss in more detail in Section 3),
and enjoys the following regret bound and query com-
plexity:

RegT = Õ (inf
ε
{εTε +

Reg(F ;T )
ε

}) and,
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NT = Õ(inf
ε
{Tε +

Reg(F ;T ) ⋅E(F , ε; f⋆)
ε2

}).

(1)

where Reg(F ;T ) denotes the regret bound for the on-
line regression oracle on F , E(F , ε; f⋆) denotes the
eluder dimension of F , and Tε denotes the number of
rounds at which the margin of the experts predictions is
smaller than ε (the exact notion of margin is defined in
Section 3).

● We show via a lower bound that, without additional
assumptions, the dependence on the eluder dimension
in the query complexity bound (1) is unavoidable if we
desire a regret bound of the form (1), even when Tε = 0.
The details are located in Section 3.2.

● For the stochastic setting, where the context {xt}t≤T
are sampled i.i.d. from a fixed unknown distribution,
we provide an alternate algorithm (Algorithm 3) that
enjoys the same regret bound as (1) but whose query
complexity scales with the disagreement coefficient of
F instead of the eluder dimension (Theorem 2). Since
the disagreement coefficient is always smaller than the
eluder dimension, Theorem 2 yields an improvement in
the query complexity.

Imitation Learning. We then move to the more challeng-
ing Imitation Learning (IL) setting, where the learner oper-
ates in an episodic finite horizon Markov Decision Process
(MDP), and can query a noisy expert for feedback (i.e. the
expert action) on the states that it visits. The interaction
proceeds in T episodes of length H each. In episode t, at
each time step h ∈ [H] and on the state xt,h, the learner
chooses an action ŷt,h and transitions to state xt,h+1. How-
ever, the learner does not receive any reward signal. Instead,
the learner can actively choose to query an expert who has
some knowledge about the correct action to be taken on xt,h,
and gives back noisy feedback yt,h about this action. Simi-
lar to the selective sampling setting, the experts knowledge
about the true label is modeled via the ground truth mod-
eling function f⋆h , which is assumed to belong to a given
function class Fh but is unknown to the learner. The goal
of the learner is to compete with the optimal policy π⋆ of
the (noiseless) expert. Our key contributions in IL are:

● In Section 4, we first demonstrate an exponential separa-
tion in terms of task horizon H in the sample complexity,
for learning via offline expert demonstration only vs in-
teractive querying of experts, when the feedback from
the expert is noisy.

● We then provide a general IL algorithm (in Algorithm 2)
that relies on online regression oracles w.r.t. {Fh}h≤H
to predict actions, and to decide whether to query for la-
bels. Similar to the selective sampling setting, the regret

bound for our algorithm scales with the regret of the on-
line regression oracles, and the query complexity bound
has an additional dependence on the eluder dimension.
Furthermore, our algorithm can handle multiple actions,
adversarially changing dynamics, arbitrary model class
F , and fairly general modeling assumptions.

● A key difference from our results in selective sampling
is that the term Tε that appears in our regret and query
complexity bounds in IL denote the number of time
steps in which the expert policy π⋆ has a small margin
(instead of the number of time steps when the learner’s
policy has a small margin). In fact, the learner and the
expert trajectories could be completely different from
each other, and we only pay in the margin term if the
expert trajectory at that time step would have a low
margin. See Section 4 for the exact definition of margin.

● In Section 4.1, we provide extensions to our algorithm
when the learner can query M experts at each round.
Similar to selective sampling setting, we do not assume
that any of the experts is singlehandedly optimal for
the entire state space, but that there exist aggregation
functions of these experts’ predictions that perform well
in practice, and with which we compete.

3. Selective Sampling
In the problem of selective sampling, on every round t,
nature produces a context xt (possibly chosen adversarially).
The learner then receives this context and predicts a label
ŷt ∈ [K] for that context. The learner also computes a
query condition Zt ∈ {0,1} for that context. If Zt = 1,
the learner requests for label yt ∈ [K] corresponding to
the xt, and if not, the learner receives no feedback on the
label for that round. Let F be a model class such that each
model f ∈ F maps contexts x to scores f(x) ∈ RK . In
this work we assume that while contexts can be chosen
arbitrarily, the label yt corresponding to a context xt is
drawn from a distribution over labels specified by the score
f⋆(xt) where f⋆ ∈ F is a fixed model unknown to the
learner. We assume that a link function ϕ ∶ RK ↦ ∆(K)
maps scores to distributions and assume that the noisy label

yt ∼ ϕ(f⋆(xt)). (2)

In this work, we assume that the link function ϕ(v) =
∇Φ(v) for some Φ ∶ RK ↦ R (see (Agarwal, 2013) for
more details) which satisfies the following assumption:
Assumption 1. The function Φ is λ-strongly-convex and
γ-smooth, i.e. for all u,u′ ∈ RK ,

λ

2
∥u′ − u∥2

2
≤ Φ(u′) −Φ(u) − ⟨∇Φ(u), u′ − u⟩ ≤ γ

2
∥u′ − u∥2

2
.

Our main contribution in this section is a selective sam-
pling algorithm that uses online non-parametric regression
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w.r.t. the model class F as a black box. Specifically, define
the loss function corresponding to the link function ϕ as
ℓϕ(v, y) = Φ(v) − v[y] where v ∈ RK and y ∈ [K]. We
assume that the learner has access to an online regression or-
acle for the loss ℓϕ (which is a convex loss) w.r.t. the classF ,
that for any sequence {(x1, y1), . . . , (xT , yT )} guarantees
the regret bound

T

∑
s=1

ℓϕ(fs(xs), ys) − inf
f∈F

T

∑
s=1

ℓϕ(f(xs), ys) ≤ Regℓϕ(F ;T ).

(3)

When ϕ is identity (under which the models in F directly
map to distributions over the labels), then ℓϕ denotes the
standard square loss, and we need a bound on Regsq(F ;T ).
When ϕ is the Boltzman distribution mapping (given by Φ
being the softmax function) then ℓϕ is the logistic loss, and
we need an online logistic regression oracle for F . Minimax
rates for the regret bound in (3) are well known:

● Square loss regression: Rakhlin & Sridharan (2014)
characterized the minimax rates for online square loss
regression in terms of the offset sequential Rademacher
complexity of F , which for example, leads to regret
bound Regsq(F ;T ) = O(log ∣F ∣) for finite function
classes F , and Regsq(F ;T ) = O(d log(T )) when F
is a d-dimensional linear class. More examples can be
found in Rakhlin & Sridharan (2014, Section 4). We
refer the readers to Krishnamurthy et al. (2017); Foster
et al. (2018a) for efficient implementations.

● Logistic loss regression: When F is finite, we have the
regret bound Reg(F ;T ) ≤ O(log ∣F ∣) (Cesa-Bianchi &
Lugosi, 2006, Chapter 9). For learning linear predictors,
there exists efficient improper learner with regret bound
Reg(F ;T ) ≤ O(d log ∣T ∣) (Foster et al., 2018b). More
examples can be found in Foster et al. (2018b, Section
7) and (Rakhlin & Sridharan, 2015).

When one deals with complex model classes F such that
the labeling concept class corresponding to F could pos-
sibly have infinite VC dimension (like it is typically the
case), then one needs to naturally rely on a margin-based
analysis (Tsybakov, 2004; Shalev-Shwartz & Ben-David,
2014; Dekel et al., 2012). For p ∈ RK , we use the following
well-known notion of margin for multiclass settings:

Margin(p) = ϕ(p)[k⋆] −max
k′≠k⋆

ϕ(p)[k′], (4)

where k⋆ ∈ argmaxk ϕ(p)[k]. A key quantity that appears
in our results is the number of xt’s that fall within an ε
margin region,

Tε =
T

∑
t=1

1{Margin(f⋆(xt)) ≤ ε}.

Tε denotes the number of times where even the Bayes
optimal classifier is confused about the correct label on
xt, and has confidence less than ε. The algorithm relies
on an online regression oracle mentioned above to pro-
duce the predictor ft at every round. The predicted label
ŷt = SelectAction(ft(xt)) = argmaxk ϕ(ft(xt))[k] is
picked based on the score ft(xt) (where ŷt is the label with
the largest score). The learner updates the regression oracle
on only those rounds in which it makes a query. Our main
algorithm for selective sampling is provided in Algorithm 1.
Our goal in this work is twofold. Firstly, we would like

Algorithm 1 Selective Sampling, Action-set A = [K]
Require: Parameters δ, γ, λ, T , function class F , and on-

line regression oracle Oracle w.r.t ℓϕ.
1: Set

Ψ
ℓϕ
δ (F , T ) =

4
λ
Regℓϕ(F ;T ) + 112

λ2 log(4 log2(T )/δ)
2: Compute f1 ← Oracle1(∅).
3: for t = 1 to T do
4: Nature chooses xt.
5: Learner plays the action

ŷt = SelectAction(ft(xt)).
6: Learner computes

∆t(xt) ∶= max
f∈F
∥f(xt) − ft(xt)∥

s.t.
t−1
∑
s=1

Zs∥f(xs) − fs(xs)∥2 ≤ Ψℓϕ
δ (F , T ),

(5)

7: Learner decides whether to query: Zt =
1{Margin(ft(xt)) ≤ 2γ∆t(xt)}.

8: if Zt = 1 then
9: Learner queries the label yt on xt.

10: ft+1 ← Oraclet({xt, yt}).
11: else
12: ft+1 ← ft.
13: end if
14: end for

Algorithm 2 to have a low regret w.r.t. the optimal model
f⋆, defined as

RegT =
T

∑
t=1

1{ŷt ≠ yt}−
T

∑
t=1

1{SelectAction(f⋆(xt)) ≠ yt}

Simultaneously, we also aim to make as few label queries
NT = ∑T

t=1Zt as possible. Before delving into our results,
we first recall the following variant of eluder-dimension
(Russo & Van Roy, 2013; Foster et al., 2020; Zhu & Nowak,
2022).

Definition 1 (Scale-sensitive eluder dimension (normed
version)). Fix any f⋆ ∈ F , and define Ẽ(F , β; f⋆) to be
the length of the longest sequence of contexts x1, x2, . . . xm
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such that for all i, there exists fi ∈ F such that

∥fi(xi) − f⋆(xi)∥ > β, and ∑
j<i
∥fi(xj) − f⋆(xj)∥2 ≤ β2.

The value function eluder dimension is defined as
E(F , β′; f⋆) = supβ≥β′ Ẽ(F , β; f⋆).

Bounds on the eluder dimension for various function classes
are well known, e.g. when F is finite, E(F , β′; f⋆) ≤ ∣F ∣ −
1, and when F is the set of d-dimensional function with
bounded norm, then E(F , β′; f⋆) = O(d). We refer the
reader to Russo & Van Roy (2013); Mou et al. (2020); Li
et al. (2022) for more examples. The following theorem is
our main result for selective sampling:

Theorem 1. Let δ ∈ (0,1). Under the modeling assump-
tions above (in (2), (3) and (4)), with probability at least
1 − δ, Algorithm 1 obtains the regret bound

RegT = Õ(inf
ε
{εTε +

γ2

λε
Regℓϕ(F ;T ) + log(1/δ)}),

while simultaneously the total number of label queries made
is bounded by:

NT = Õ
⎛
⎝
inf
ε

⎧⎪⎪⎨⎪⎪⎩
Tε +

γ2

λε2
⋅Regℓϕ(F ;T ) ⋅E(F , ε/4γ; f⋆)

+ log(1/δ)
⎫⎪⎪⎬⎪⎪⎭

⎞
⎠
.

A few points are in order:

● It must be noted that for most settings we consider, as an
example if model class F is finite, one typically has that
Reg(F ;T ) ≤ log ∣F ∣. Thus, in the case where one has
a hard margin condition i.e. Tγ = 0 for some γ > 0, we
get RegT ≤ O (

log ∣F ∣
γ
) and NT ≤ O (E(F,ε;f⋆) log ∣F ∣

γ2 ).

● Our regret bound does not depend on the eluder dimen-
sion. However, the query complexity bound has a depen-
dence on eluder dimension. Thus, for function classes
for which the eluder dimension is large, the regret bound
is still optimal while the number of label queries may be
large.

3.1. Stochastic Setting

So far we assumed that the contexts {xt}t≥0 could be cho-
sen in a possible adversarial fashion, and thus our bound on
the number of label queries scales with the eluder dimen-
sion. However, it turns out that if the contexts are drawn
i.i.d. from some (unknown) distribution µ, then one can
improve the query complexity to scale with the value func-
tion disagreement coefficient of F (defined below) which is
always smaller than the eluder dimension (Lemma 6).

Definition 2 (Scale sensitive disagreement coefficient
(normed version), (Foster et al., 2020)). Let F ⊆ {X ↦
RK}. For any f⋆ ∈ F , and β0, ε0 > 0 , the value function
disagreement coefficient θval(F , ε0, β0; f

⋆) is defined as

sup
µ

sup
β>β0,ε>ε0

{ ε
2

β2
⋅Prx∼µ(∃f∈F ∣∥f(x)−f

⋆(x)∥>ε,
∥f−f⋆∥µ≤β )} ∨ 1

where ∥f∥µ =
√
Ex∼µ[∥f(x)∥2].

The key idea that gives us the above improvement, of re-
placing the eluder dimension by disagreement coefficient
in the query complexity bound, is to use epoching for the
query condition, while still using an online regression or-
acle to make predictions. The exact algorithm is given in
Algorithm 3, deferred to Appendix C.4.

Theorem 2. Let δ ∈ (0,1), and consider the modeling
assumptions in (2), (3) and (4). Furthermore, suppose that
xt is sampled i.i.d. from µ, where µ is a fixed distribution.
Then, with probability at least 1 − δ, Algorithm 3 obtains
the regret bound

RegT = Õ(inf
ε
{εTε +

γ2

λε
Regℓϕ(F ;T ) + log(1/δ)}),

while simultaneously the total number of label queries made
is bounded by:

NT = Õ
⎛
⎝
inf
ε

⎧⎪⎪⎨⎪⎪⎩
Tε + log(1/δ)

+γ
2

λε2
⋅Regℓϕ(F ;T ) ⋅ θval(F , ε/8γ,Regℓϕ(F ;T )/T ; f⋆)

⎫⎪⎪⎬⎪⎪⎭

⎞
⎠
.

We note that Algorithm 3 automatically adapts to Tsybakov
noise condition with respect to µ.

Corollary 1 (Tsybakov noise condition, (Tsybakov,
2004)). Suppose there exists constants c, ρ ≥ 0 s.t.
Prx∼µ(Margin(f⋆(x)) ≤ ε) ≤ cερ for all ε ∈ (0,1), and
consider the same modeling assumptions as in Theorem 2.
Then, with probability at least 1 − δ, Algorithm 3 obtains
the bound

RegT = Õ((Regℓϕ(F ;T ))
ρ+1
ρ+2 ⋅ (T ) 1

ρ+2 ), and,

NT = Õ((Regℓϕ(F ;T ) ⋅ θval(F , ε/8γ,Regℓϕ(F ;T )/T ; f⋆))
ρ

ρ+2

⋅ T 2
ρ+2 ).

A detailed comparison of our results with the relevant prior
works is given in Appendix C.
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3.2. Lower Bounds (Binary Action Case)

We supplement the above upper bound with a lower bound in
terms of star number (defined below). The star number can
be bounded from above by eluder dimension which appears
in our lower bounds. While in general star number may not
be lower bounded by eluder dimension, it is the case that for
most commonly considered classes, star number seems to
be the same order as eluder dimension (Foster et al., 2020).
For the sake of a clean presentation, we restrict our lower
bound to the binary actions case, although one can easily
extend the lower bounds to the multiple actions case.

Definition 3 (scale-sensitive star number). For any ζ ∈
(0,1) and β ∈ (0, ζ/2), define sval(F , ζ, β) as the largest
m such that there exists target function f⋆ ∈ F and sequence
x1, . . . , xm ∈ X s.t. ∀i ∈ [m], ∣f⋆(xi)∣ > ζ, ∃fi ∈ F s.t.,

(1) ∑j≠i(fi(xj) − f⋆(xj))2 < β2

(2) ∣fi(xi)∣ > ζ/2 and fi(xi)f⋆(xi) < 0

(3) ∣fi(xi) − f⋆(xi)∣ ≤ 2ζ

The below theorem provides a lower bound on number of
queries, in terms of star number for any algorithm that guar-
antees a non-trivial regret bound.

Theorem 3. Given a function class F and some desired
margin ζ > 0, define β to be the largest β s.t., β2 ≤
min{ζ2/sval(F , ζ, β), ζ2/16}. Any algorithm that guar-
antees regret bound of E[RegT ] ≤ C ζT

sval(F,ζ,β) on all in-
stances with margin ζ/2, there exists a distribution µ over
X and a target function f⋆ ∈ F with margin ζ such that, on
that instance the algorithm has a lower bound of number of
label queries of at least:

E[NT ] ≥
log(2)sval(F , ζ, β)

40ζ2

The above lower bound demonstrates that a dependence on
the a quantity like eluder dimension or star number in the
number of queries required is real, thus showing that our
upper bound cannot be improved (beyond the discrepency
between star number and eluder dimension).

Corollary 2. There exists a class F with ∣F ∣ =
√
T such

that any algorithm that makes less than
√
T number of label

queries, will have a regret of at least E[RegT ] ≥
√
T .

4. Imitation Learning (H > 1) with Selective
Queries to Expert

The problem of Imitation Learning (IL) consists of learn-
ing policies in MDPs when one has access to an expert or
a teacher that can make suggestions on which actions to

take at a given state. IL has enjoyed tremendous empiri-
cal success, and various different interaction models have
been considered. In the simplest IL setting, studied under
the umbrella of offline RL (Levine et al., 2020) or Behav-
ior Cloning (Ross & Bagnell, 2010; Torabi et al., 2018),
the learner is given an offline dataset of trajectories (state
and action pairs) from an expert and aims to output a well-
performing policy. Here, the learner is not allowed any
interaction with the expert, and can only rely on the pro-
vided dataset of expert demonstrations for learning. A much
stronger IL setting is the one where the learner can interact
with the expert, and rely on its feedback on states that it
reaches by executing its own policies.

In their seminal work, Ross et al. (2011) proposed a frame-
work for interactive imitation learning via reduction to on-
line learning and classification tasks. This has been exten-
sively studied in the IL literature (e.g., (Ross & Bagnell,
2014; Sun et al., 2017; Cheng & Boots, 2018)). The algo-
rithm DAgger from (Ross et al., 2011) has enjoyed great
empirical success. On the theoretical side, however, perfor-
mance guarantees for DAgger only hold under the assump-
tion that, when queried, the expert makes action suggestions
from a very good policy π⋆ that we would like to compete
with. However, in practice, human demonstrators are far
from being optimal and suggestions from experts should
be modeled as noisy suggestions that only correlate with
π⋆. It turns out that IL where one only has access to noisy
expert suggestions is drastically different from the noiseless
setting. For instance, in the sequel, we show that there can
be an exponential separation in terms of the dependence on
horizon H in the sample complexity of learning purely from
offline demonstration vs learning with online interactions.

Formally, we consider interactive IL in an episodic finite
horizon Markov Decision Process (MDP), where the learner
can query a noisy expert for feedback (i.e., action) on the
states that it visits. The game proceeds in T episodes.
In each episode t, the nature picks the initial state xt,1

for h = 1; then for every time step h ∈ [H], the learner
proposes an action ŷt,h ∈ [K] given the current state
xt,h; then the system proceeds by sampling the next state
xt;h+1 ∼ T̃ (xt,h, ŷt,h). The learner then decides whether
to query the expert for feedback. If the learner queries, it
receives a recommended action from the expert, and oth-
erwise the learner does not receive any additional informa-
tion. The game moves on to the next time step h + 1, and
moves to the next episode t + 1 when it reaches to time
step H in the current episode. We now describe the ex-
pert model. With f⋆h being the underlying score function at
time step h, the expert feedback is sampled from a distri-
bution ϕ(f⋆h(x)) ∈∆(K), with ϕ ∶ RK ↦ RK being some
link function (e.g., ϕ(p)[i]∝ exp(p[i])). The benchmark
that we compare against the Bayes optimal policy given by
π⋆h(x) ∶= argmaxa∈[K] ϕ(f⋆h(x)). Our goal is to learn a
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policy π that is comparable to π⋆ in terms of optimizing
some (unknown) reward function, under possibly adversar-
ial transition dynamics, while at the same time, we want to
minimize the number of queries to the expert. Regret for
the IL problem is defined as

RegT =
T

∑
t=1

H

∑
h=1

r(xπ⋆
t,h, π

⋆
h(xπ⋆

t,h)) −
T

∑
t=1

T

∑
h=1

r(xt,h, ŷt,h)

where xπ⋆
t,h denotes the states that would have been gener-

ated if we executed π⋆ from the beginning of the episode,
i.e., we consider a counterfactual regret. The query com-
plexity NT is the total number of queries to expert across
all H steps in T episodes.

Given the selective sampling results we provided in the
earlier section, one may be tempted to apply them to the
imitation learning problem. However, there is a caveat. A
key to the reduction in Ross et al. (2011) is to apply Per-
formance Difference Lemma (PDL) to reduce the problem
of IL to online classification under the sequence of state
distributions induced by the policies played by the learning
algorithm. Hence, if one blindly applied this reduction, then
in the margin term, one would need to account for the states
that the learner visits (which could be arbitrary). Thus, for
DAgger to have meaningful bounds, we would require a
large margin over the entire state space. This is too much
to ask for in practical applications. Consider the example
of learning autonomous driving from a human driver as the
expert. It is reasonable to believe that human drivers can
confidently provide the right actions when they are driving
themselves or are faced with situations they are more fa-
miliar with. However, assuming that the human driver is
going to be confident in an unfamiliar situation (e.g., an
emergency situation that is not often encountered by the
human driver), is a strong assumption. Towards that end,
we make a significantly weaker, and much more realistic,
margin assumption that the expert has a large margin only
on the state distribution induced by π⋆, and not on the state
distribution of the learner or the noisy expert. In particular,
we define Tε,h to denote the total number of episodes where
the comparator policy π⋆ visits a state with low margin at
time step h, i.e., Tε,h = ∑T

t=1 1{Margin(f⋆h(xπ⋆
t,h)) ≤ ε}.

We now proceed to our main results in this section. Learn-
ing from a noisy expert is indeed very challenging. In fact,
learning from noisy expert feedback may even be statis-
tically intractable in the non-interactive IL setting, where
the learner is only limited to accessing offline noisy expert
demonstrations for learning, e.g. in offline RL, Behavior
Cloning, etc. The following lower bound formalizes this.
In fact, the same lower bound also shows that AggreVaTe
(Ross & Bagnell, 2014) style algorithms would not succeed
under noisy expert feedback, AggreVaTe relies on roll-outs
obtained by running the (noisy) expert suggestions.

Proposition 1 (Lower bound for learning from non-interac-
tive noisy demonstrations). There exists an MDP, for every
h ≤ H , a function class Fh with ∣Fh∣ ≤ 2H , a noisy ex-
pert whose optimal policy π⋆(x) = argmaxa(f⋆h(x)[a])
for some f⋆h ∈ Fh with Tε,h = 0 for any ε ≤ 1/4, such than
any non-interactive algorithm needs Ω(2H) many noisy ex-
pert trajectory demonstrations to learn, with probability at
least 3/4, a policy π̂ that is 1/8-suboptimal w.r.t. π⋆.

The above Proposition 1 suggests that in order to learn
with a reasonable sample complexity (that is polynomial
in H), a learner must be able to interactively query the
expert. In Algorithm 2, we provide an interactive imitation
learning algorithm (with selective querying) that can learn
from noisy expert feedback. A key to obtaining our result is
a modified version of PDL, that we provide in Lemma 18
in the appendix, that allows us to only have the margin
under the state distribution of π⋆. Our result extends to the
setting where transitions are picked adversarially, i.e., at
time step h and episode t, after seeing ŷt,h proposed by the
learner, the nature can select Tt,h which deterministically
generates xt,h+1 given xt,h, ŷt,h. The regret bound and
query complexity bounds for Algorithm 2 are:

Theorem 4. Let δ ∈ (0,1). Under the modeling assump-
tions above, with probability at least 1 − δ, Algorithm 2
obtains:

RegT = Õ
⎛
⎝
inf
ε

⎧⎪⎪⎨⎪⎪⎩
H

H

∑
h=1

Tε,h

+ Hγ2

λε2

H

∑
h=1

Regℓϕ(Fh;T ) + log(1/δ)
⎫⎪⎪⎬⎪⎪⎭

⎞
⎠
,

and,

NT = Õ
⎛
⎝
inf
ε

⎧⎪⎪⎨⎪⎪⎩
H

H

∑
h=1

Tε,h + log(1/δ)

+ Hγ2

λε2

H

∑
h=1

Regℓϕ(Fh;T ) ⋅E(Fh, ε/8γ; f⋆h)
⎫⎪⎪⎬⎪⎪⎭

⎞
⎠
.

In the stochastic setting, where the transition dynamic is
fixed during interaction, one can hope to replace eluder
dimension in the query complexity by disagreement co-
efficient of the corresponding function classes, by using
epoching techniques similar to Section 3.1. We leave this
for future work.

4.1. Learning from Multiple Teachers

In (Dekel et al., 2012), the problem of selective sampling
from multiple teachers is considered with the main motiva-
tion being that we can consider each teacher as being an
expert in certain contexts or scenarios, and we would like to
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Algorithm 2 Imitation Learning with Expert Feedback,A =
{1,2, . . . ,K}
Require: Parameters δ, γ, λ, T , function class {Fh}h≤H ,

online oracle Oracleh w.r.t. ℓϕ for h ∈ [H].
1: Set Ψ

ℓϕ
δ (Fh, T ) = 4

λ
Regℓϕ(Fh;T ) +

112B
λ2 log(4H log2(T )/δ).

2: Compute f1,h = Oracle1,h(∅) for h ∈ [H].
3: for t = 1 to T do
4: Nature chooses the state xt,1.
5: for h = 1 to H do
6: Learner plays ŷt,h = SelectAction(ft,h(xt,h))
7: Learner transitions to the next state in this round

xt,h+1 ← Tt,h(xt,h, ŷt,h).
8: Learner computes

∆t,h ∶= max
f∈Fh

∥f(xt,h) − ft,h(xt,h)∥

s.t.
t−1
∑
s=1

Zs,h∥f(xs,h) − fs,h(xs,h)∥2 ≤ Ψ
ℓϕ
δ (Fh, T ).

(6)

9: Learner decides whether to query:
Zt,h = 1{Margin(ft,h(xt,h)) ≤ 2γ∆t,h}.

10: if Zt,h = 1 then
11: Learner queries the label yt,h for xt,h.
12: ft+1,h ← Oraclet+1,h({xt,h, yt,h})
13: else
14: ft+1,h ← ft,h
15: end if
16: end for
17: end for

learn from their joint feedback. The goal there is to perform
not only as well as the best of them individually but even
as well as the best combination of them. This motivation
is even more lucrative for the IL setting, as we can hope
to get policies that perform much better than any single
teacher. Continuing with the example of learning to drive
from human demonstrations, we might have one human
demonstrator who is an expert in highway driving, another
human who is an expert in city driving, and the third one in
off-road conditions. Each expert is confident in their own
terrain, but we would like to learn a policy that can perform
well in all terrains.

The formal model is similar to the single-teacher case, but
now we have M teachers. For every time step h ≤ H ,
the m-th teacher has an underlying ground truth model
f⋆,mh ∈ Fm

h that it uses to produce its label, i.e. given a
context xh it draws its label ymh ∼ ϕ(f⋆,m(xh)), where ϕ is
the link function. On rounds in which the learner queries for
feedback, it gets back a label from each of the M experts,
i.e. {y1h, . . . , yMh }. We next describe the policy π⋆ that we
wish to compete with. Let A be a mapping, known to

the learner, that combines the recommendation of the M
experts to obtain a ground truth label for the corresponding
states, i.e. the ground truth label on the context xh we define
yh ∼ A (ϕ(f⋆,1(xh)), . . . , ϕ(f⋆,M(xh))). For example,
A could simply choose the majority action proposed by
the experts on xh. Under this ground truth process for
labels, the Bayes optimal predictor is simply π⋆(xh) =
SelectAction(A (ϕ(f⋆,1(xh)), . . . , ϕ(f⋆,M(xh)))),
which is what we wish to compete with. Our main theorem
below bounds the number of label queries to teachers, and
regret with respect to this π⋆. Similar to the other results
in this paper, our bounds here depend on a margin term
Tε,h, that captures the number of rounds in which the Bayes
optimal predictor π⋆ can flip its label if our estimates of the
M teachers are off by at most ε (in ℓ∞ norm). Similar to
the single teacher case, we only pay for margin w.r.t. the
state distributions induced by π⋆.

Theorem 5. Let δ ∈ (0,1). Under the modeling assump-
tions above for the multiple experts setting, with probability
at least 1 − δ, the selective sampling Algorithm 4 (given in
the appendix) obtains:

RegT = Õ
⎛
⎝
inf
ε

⎧⎪⎪⎨⎪⎪⎩
H

H

∑
h=1

Tε,h

+ H

λε2

M

∑
m=1

H

∑
h=1

Regℓϕ(Fm
h ;T ) + log(1/δ)

⎫⎪⎪⎬⎪⎪⎭

⎞
⎠
,

and,

NT = Õ
⎛
⎝
inf
ε

⎧⎪⎪⎨⎪⎪⎩
H

H

∑
h=1

Tε,h + log(1/δ)

+ H

λε2

H

∑
h=1

M

∑
m=1

Regℓϕ(Fm
h ;T ) ⋅E(Fm

h , ε/8; f⋆,mh )
⎫⎪⎪⎬⎪⎪⎭

⎞
⎠
.

In Appendix A, we evaluate our IL algorithm on the Cart-
pole environment, with single and multiple experts. We
found that our algorithm can match the performance of
passive querying algorithms while making a significantly
lesser number of expert queries. Finally, also note that set-
ting H = 1 in the above result, recovers an algorithm, and
a bound on the regret and query complexity for selective
sampling with multiple teachers.
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A. Experiments
We conduct experiments to verify our theory. To this end, we first introduce the simulator, Cart Pole (Barto et al., 1983;
Brockman et al., 2016), and then explain the implementation of our algorithm and the baselines. Finally, we present the
results.

Cart Pole. Cart Pole is a classical control problem, in which a pole is attached by an un-actuated joint to a cart. The goal
is to balance the pole by applying force to the cart either towards the left or towards the right (so binary action). The episode
is terminated once either the pole is out of balance or the cart deviates too far from the origin. A reward of 1 is obtained in
each time step (however, the algorithm does not get any reward signal). The observations are four-dimensional, with the
values representing the cart’s position, velocity, the pole’s angle, and angular velocity. The action is binary, indicating the
force is either to the left or to the right.

Expert policies generation. We first generate an optimal policy π⋆ (that attains the maximum possible reward of 500)
by policy gradient. We notice that when running the optimal policy π⋆, the absolute value of the cart’s position only lies
in [0,2]. Hence, to generate M experts, we first divide this interval into M sub-intervals [a0, a1],[a1, a2],. . . ,[an−1, aM ]
(a0 = 0 and aM = 2) by geometric progression. For the i-th expert, it plays the same action as π⋆ when the absolute value of
the cart’s position is in the interval [ai−1, ai] and plays uniformly at random outside of this interval. We find that using
such generation, each expert individually cannot achieve a good performance (when M > 1), while a proper combination of
them can still be as strong as π⋆. We conduct experiment for M = 1,2,3, and 5, respectively. Given this design of expert
generation, when the cart is in the sub-interval [ai−1, ai], the only expert with non-zero margin is exactly the i-th expert.

Implementation. The algorithm is similar to Algorithm 4 but with some modification for practical purpose. First, we use a
neural network (single hidden layer neural network,with 4 neurons in the hidden layer) as our function class {Fm

h }h≤H,m≤M .
Second, we specify SelectAction() to pick the action of the most confident expert, i.e.,

SelectAction(f1
t,h(x), . . . , fM

t,h(x)) ∶= sign(f î
t,h(x)) where î = argmax

i∈[M]
∣f i

t,h(x)∣.

Since we are considering binary action, we assume f i
t,h(x) ∈ [−1,1], and the action space is {−1,1}. Third, to compute

∆m
t,h efficiently, we apply the Lagrange multiplier to (57) to arrive at the following equivalent problem:

∆m
t,h(xt,h) ∶= min

f∈Fm
h

max
α≥0

−∥f(xt,h) − fm
t,h(xt,h)∥

+ α(
t−1
∑
s=1

Zs,h∥f(xs,h) − fm
s,h(xs,h)∥

2 −Ψℓϕ
δ (F

m
h , T )) .

Then we treat the Lagrange multiplier α as a constant, which converts the problem into the following:

∆m
t,h(xt,h) ∶= min

f∈Fm
h

−∥f(xt,h) − fm
t,h(xt,h)∥ + α

t−1
∑
s=1

Zs,h∥f(xs,h) − fm
s,h(xs,h)∥

2
. (7)

The study of varying α is shown in Figure 1. We found that small values (e.g., α = 1) mostly lead to poor performance,
while the results are fairly similar for large values. In our key experiments, we choose α = 50 when the number of experts is
1, 2 or 3, and choose 200 for 5-expert experiments. We note that since computing (7) for each time step involves repetitively
fitting neural networks, which is time-consuming, we do a warm start at each round. In particular, we set the initial weights
for the neural network of each round to be the weights of the trained network from the previous round. We also implemented
early stopping that stops the iteration if the loss does not significantly decrease for multiple consecutive iterations. The
online regression oracle Oracle() is instantiated as applying gradient descent for certain steps on the mean squared loss over
all data collected so far, using warm start for speedup as well.

We first conduct experiments on a single expert setting. In Figure 2 we plot the curves of return and number of queries with
respect to iterations for our method, and compare to DAgger (which passively makes queries at every time step; (Ross &
Bagnell, 2014)). We note that while our algorithm does not converge to the optimal value as fast as DAgger, the number of
queries made by our algorithm is significantly fewer, which means that our method is indeed balancing the speed of learning
and the number of queries.

In additional to DAgger, we also compare to the following baselines:
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Figure 1. Learning curves of return with respect to the number of queries for different values of α and different numbers of experts.
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Figure 2. Learning curves of the return and the number of queries for 1 expert.

● Passive learning. By passive learning, we mean running our algorithms with Zt,h = 1, i.e., making queries whenever
possible. Based on different styles of expert feedback, we divide the passive learning baselines into two: noisy experts
and noiseless experts. For the former we get the noisy label ymt,h for xt,h (generated by ymt,h ∼ ϕ(f

⋆,m
h (xt,h))), and for

the latter we directly get the action of the optimal policy (i.e. the action π⋆h(xt,h)). Intuitively, noiseless feedback is
more helpful than the noisy one.

● MAMBA. We compare our algorithm with (a slight variant of) MAMBA (Cheng et al., 2020). At each time step, it
creates copies of the environment and run each expert policy on these copies, and then it selects the action of the expert
policy with the highest return. For simplicity, we refer to this algorithm as MAMBA. Note that MAMBA assumes that
one has access to the underlying reward function. Thus this baseline is using significantly more information than our
approach.

● Best expert. We also compared our algorithm with the best expert policy.

The main results are shown in Figure 3. We first noticed that our algorithm outperforms passive learning with noisy experts
in all settings. Moreover, we beat the noiseless version when there is only one expert. Intuitively, getting feedback from
noiseless experts is a very strong assumption and it is not surprising to see that the performance is improved with this
stronger feedback. Note that our algorithm is only getting noisy labels as feedback. We also note that, despite the fact
that MAMBA achieves better results than the best expert policy (in terms of the value function), it is still worse than our
algorithm. Indeed, MAMBA does not even learn a policy that can solve the task when M ≥ 2. This is because by our
construction of experts, there is no single expert that is capable of solving the task alone. Note that MAMBA performs well
in the one expert case because in that case, the (single) expert can reliably solve the control task.
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Figure 3. Learning curves of return with respect to the number of queries for different algorithms and numbers of experts.

B. Useful Tools and Notation
Additional notation. Throughout the paper, we assume that the ties are broken arbitrarily but consistently. Vector-valued
variables are denoted with small alphabets like u, v, etc, and matrix-valued variables are denoted with capital alphabets like
F,G, etc. Throughout the paper, we assume that for any f ∈ F , ∥f(x)∥ ≤ B ≤ 1.

The following lemma is used throughout the appendix, and whose proof is a tautology.

Lemma 1. Let E1 and E2 be any two events such that E1 Ô⇒ E2 then 1{E1} ≤ 1{E2}.

B.1. Basic Probabilistic Tools

Lemma 2 (Theorem 1 in Srebro et al. (2010)). Let T > 0, and let F = {X × Y} be an arbitrary function class, and ℓ be
an γ-smooth and non-negative loss such that ∣ℓ(f(x), y)∣ ≤ B for all x ∈ X , y ∈ Y, f ∈ F . For any δ > 0, we have with
probability at least 1 − δ over a random sample of size T , for any f ∈ F ,

T E(x,y)∼µ[ℓ(f(x), y)] ≤ 2
T

∑
t=1

ℓ(f(xt), yt) + c1(HT log3(T )R2
T (F) +B log(1/δ))

where c1 < 105 is a numeric constant.

The precise value of the numeric constant c1 in the above can be derived from Srebro et al. (2010) and Mendelson (2002).

The following inequalities are well-known; we use the version stated in Zhu & Nowak (2022).

Lemma 3 (Freedman’s inequality). Let {Xt}t≤T be a real-valued martingale different sequence adapted to the filtration Ft,
and let Et[⋅] ∶= E[⋅ ∣ Ft−1]. If ∣Xt∣ ≤ B almost surely, then for any η ∈ (0,1/B), the following holds with probability at
least 1 − δ:

T

∑
t=1

Xt ≤ η
T

∑
t=1

Et[X2
t ] +

B log(1/δ)
η

.

Lemma 4. Let {Xt}t≤T be a sequence of positive valued random variables adapted to the filtration Ft, and and let
Et[⋅] ∶= E[⋅ ∣ Ft−1]. If Xt ≤ B almost surely, then with probability at least 1 − δ,

T

∑
t=1

Xt ≤
3

2

T

∑
t=1

Et[Xt] + 4B log(2/δ),

and

T

∑
t=1

Et[Xt] ≤ 2
T

∑
t=1

Xt + 8B log(2/δ).

13
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B.2. Online Learning

Lemma 5. Suppose that the labels are generated according to the (2) where the link function satisfies Assumption 1.
Additionally, assume that the regression oracle satisfies the guarantee (3). Then, for any δ ≤ 1/e and T ≥ 3, with probability
at least 1 − δ, we have for all t ≤ T ,

t

∑
s=1
∥fs(xs) − f⋆(xs)∥2 ≤ Ψℓϕ

δ (F , T ) ∶=
4

λ
Regℓϕ(F ;T ) + 112B

λ2
log(4 log2(T )/δ),

where B is defined such that supx f(x) ≤ B.

Proof. Using Agarwal (2013, Lemma 2) along with an Union bound implies that for all t ≤ T ,

t

∑
s=1
∥fs(xs) − f⋆(xs)∥2 ≤

4

λ

t

∑
s=1
(ℓϕ(fs(xs), ys) − ℓϕ(f⋆(xs), ys)) +

112B

λ2
log(4 log2(T )/δ).

Plugging in the regret bound (3) in the above, we get that

t

∑
s=1
∥fs(xs) − f⋆(xs)∥2 ≤

T

∑
s=1
∥fs(xs) − f⋆(xs)∥2 ≤

4

λ
Regℓϕ(F ;T ) + 112B

λ2
log(4 log2(T )/δ).

B.3. Eluder Dimension, Disagreement Coefficient, and Star Number

For the sake of completeness, we recall the scalar versions of scale-sensitive eluder dimension, and disagreement coefficient
introduced in Russo & Van Roy (2013); Foster et al. (2020), which is defined for scalar valued function class F ⊆ {X ↦ R}.
Definition 4 (Scale-sensitive eluder dimension (scalar version), Russo & Van Roy (2013); Foster et al. (2020)). Let
F ⊆ {X ↦ R}. Fix any f⋆ ∈ F , and define E′(F , β; f⋆) to be the length of the longest sequence of contexts x1, x2, . . . xm

such that for all i, there exists fi ∈ F such that

∣fi(xi) − f⋆(xi)∣ > β, and ∑
j<i
(fi(xj) − f⋆(xj))2 ≤ β2.

We define the scale-sensitive eluder dimension as E(F , β0; f
⋆) ∶= supβ0≥β E

′(F , β; f⋆).
Definition 5 (Scale-sensitive disagreement coefficient (scalar version), (Foster et al., 2020)). Let F ⊆ {X ↦ R}. For any
f⋆ ∈ F , and γ0, ε0 > 0 , the value function disagreement coefficient θval(F , ε0, γ0; f⋆) is defined as

sup
µ

sup
γ>γ0,ε>ε0

{ ε
2

γ2
⋅Prx∼µ(∃f ∈ F ∣ ∣f(x) − f⋆(x)∣ > ε, ∥f − f⋆∥µ ≤ γ)} ∨ 1

where ∥f∥ =
√
Ex∼µ[f2(x)].

While Definition 4 and 5 define the eluder dimension and disagreement coefficient for scalar valued functions, in this work
we often deal with vector-valued functions. In the following, we extend the above definitions to vector-valued functions. We
first provide the normed versions which are direct extensions of the corresponding definitions (mentioned above) for the
scalar case as introduced in Russo & Van Roy (2013); Foster et al. (2020). We first defined the normed version of eluder
dimension.

Definition 6 (Scale-sensitive eluder dimension (normed version)). Let F ⊆ {X ↦ RK}. Fix any f⋆ ∈ F , and define
Ẽ(F , β; f⋆) to be the length of the longest sequence of contexts x1, x2, . . . xm such that for all i, there exists fi ∈ F such
that

∥fi(xi) − f⋆(xi)∥ > β, and ∑
j<i
∥fi(xj) − f⋆(xj)∥2 ≤ β2.

The value function eluder dimension is defined as E(F , β′; f⋆) = supβ≥β′ Ẽ(F , β; f⋆).

14
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We next define the normed version of disagreement coefficient for vector-valued functions.

Definition 7 (Scale sensitive disagreement coefficient (normed version), (Foster et al., 2020)). Let F ⊆ {X ↦ RK}. For
any f⋆ ∈ F , and β0, ε0 > 0 , the value function disagreement coefficient θval(F , ε0, β0; f

⋆) is defined as

sup
µ

sup
β>β0,ε>ε0

{ ε
2

β2
⋅Prx∼µ(∃f ∈ F ∣ ∥f(x) − f⋆(x)∥ > ε, ∥f − f⋆∥µ ≤ β)} ∨ 1

where ∥f∥µ =
√
Ex∼µ[∥f(x)∥2].

We additionally also define the following mixed version of eluder dimension for vector valued functions.

Definition 8 (Scale-sensitive eluder dimension (mixed version)). Let F ⊆ {X ↦ RK}. Fix any f⋆ ∈ F , and define
Ě′(F , β; f⋆) to be the length of the longest sequence of contexts and actions (x1, y1), (x2, y2) . . . (xm, ym) such that for
all i, there exists fi ∈ F such that

∣fi(xi)[yi] − f⋆(xi)[yi]∣ > β, and ∑
j<i
(fi(xj)[yj] − f⋆(xj)[yj])2 ≤ β2.

We define the scale sensitive eluder dimension (mixed version) as Ě(F , β; f⋆) ∶= supβ≥β0
Ě′(F , β0; f

⋆).

The star number is bounded by the eluder dimension from above: sval(F , β; f⋆) ≤ E(F , β; f⋆). The following lemma
shows that the disagreement coefficient can be always bounded by the squared star number and eluder dimension.

Lemma 6 (Proposition 6, Foster et al. (2020)). Suppose F ⊆ {X ↦ RK} is a uniform Glivenko-Cantelli class. For any
f⋆ ∈ F and γ, ε > 0, we have θval(F , ε, γ; f⋆) ≤ 4(sval(F , γ; f⋆))2 and θval(F , ε, γ; f⋆) ≤ 4E(F , γ; f⋆).

We refer the reader to (Foster et al., 2020) for bounds on eluder dimension, disagreement coefficient and star number for
various function classes.

We next provide various technical results that are useful in bounding the total number of queries made by our algorithm. We
first provide a technical result which bounds the number of times we can find a function f ′ in a refinement Ft of F , such
that f ′ is sufficiently far away from f⋆ ∈ F . The following lemma is a variant of Russo & Van Roy (2013, Lemma 3), and
first appears in Foster et al. (2020, Lemma E.4).

Lemma 7. Let {(xt, yt), Zt}Tt=1 be sequence of tuples, where xt ∈ X and Zt ∈ {0,1}. Fix any f⋆ ∈ F , and define the set
Ft = {f ∈ F ∣ ∑t−1

s=1Zs(f(xs)[ys] − f⋆(xs)[ys])2 ≤ β2}. Then, for any ζ > 0,

T

∑
t=1

Zt1{∃f ′ ∈ Ft ∶ ∥f ′(xt) − f⋆(xt)∥ ≥ ζ} ≤ (
β2

ζ2
+ 1)Ě(F , ζ; f⋆).

Proof. We first note that we can always remove a tuple {(xt, yt), Zt} whenever Zt = 0 without any effect on the conclusion.
Hence, we can assume Zt = 1 for all t ∈ [T ] without loss of generality. Then the rest of the proof essentialy follows from
Foster et al. (2020, Lemma E.4). For completeness, we state the full proof here.

For simplicity of presentation, we say (xt, yt) is ζ-independent of (x1, y1), . . . , (xt−1, yt−1) if there exists f ∈ F such that
∣f(xt)[yt] − f⋆(xt)[yt]∣ ≥ ζ and ∑t−1

s=1(f(xs)[ys] − f⋆(xs)[ys])2 ≤ ζ2. Otherwise, we say x is ζ-dependent. The proof
consists of the following two claims.

First, we claim that for any t ∈ [T ], if there exists f ∈ Ft such that ∣f(xt)[yt] − f⋆(xt)[yt]∣ ≥ ζ, then xt is ζ-dependent
on at most β2/ζ2 disjoint sequences of (x1, y1), . . . , (xt−1, yt−1). To show this, let’s say xt is ζ-dependent on a particular
subsequence (xi1 , yi1), . . . , (xik , yik) while ∣f(x)[y] − f⋆(x)[y]∣ ≥ ζ. Then it must holds that

k

∑
j=1
(f(xij)[yij ] − f⋆(xij)[yij ])

2

≥ ζ2.

If there are M such disjoint subsequence, then we can add them up and obtain the following:

t−1
∑
s=1
(f(xs)[ys] − f⋆(xs)[ys])

2

≥Mζ2.
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By the construction of Ft, the left-hand side above is at most β2. Hence we conclude that β2 ≥ Mζ2, which implies
M ≤ β2/ζ2.

Second, we claim that for any k and any sequence (x1, y1), . . . , (xk, yk), there exists j ≤ k such that xj is ζ-dependent
on at least N ∶= ⌊k / Ě(F , ζ; f⋆)⌋ disjoint subsequences of (x1, y1), . . . , (xj−1, yj−1). This can be proved by construction.
Let B1, . . . ,BN be N subsequences of (x1, y1), . . . , (xk, yk) and are initialized with Bi = {(xi, yi)}. Then we repeat the
following process for j = N + 1,N + 2 . . . , k.

1. We first check if xj is ζ-dependent on Bi for all i ∈ [N]. If so, we are done.

2. Otherwise, pick an arbitrary i ∈ [N] for which xj is ζ-independent of Bi and append (xj , yj) to Bi, i.e., Bi ←
Bi ∪ {(xj , yj)}.

If we don’t reach any j while running the above process for which the first statement above is satisfied, we should end up
with ∑N

i=1 ∣Bi∣ = k ≥ N ⋅ Ě(F , ζ; f⋆). We note that by construction ∣Bi∣ ≤ Ě(F , ζ; f⋆) and thus ∣Bi∣ = Ě(F , ζ; f⋆) for all
i ∈ [N], which implies xk must be ζ-dependent on all Bi.

Finally, let xi1 , . . . , xik be the subsequence where, for all s ∈ [k], there exists f ∈ Fis such that ∣f(xis)[yis]−f⋆(xis)[yis]∣ ≥
ζ. By our first claim we know each element of this subsequence is ζ-dependent on at most β2/ζ2 disjoint subsequences. By
the second claim, we know that there exists an element that is ζ-dependent on at least ⌊k / Ě(F , ζ; f⋆)⌋ disjoint subsequences.
So we must have ⌊k / Ě(F , ζ; f⋆)⌋ ≤ β2/ζ2. Hence, k ≤ (β2/ζ2 + 1) ⋅ Ě(F , ζ; f⋆).

The following lemma is an extension of Lemma 7 that holds for the normed version of eluder dimension given in Definition 1.
The proof is essentially the same as that of Lemma 7, so we skip it for conciseness.

Lemma 8. Let {xt, Zt}Tt=1 be sequence of tuples, where xt ∈ X and Zt ∈ {0,1}. Fix any f⋆ ∈ F , and define the set
Ft = {f ∈ F ∣ ∑t−1

s=1Zs∥f(xs) − f⋆(xs)∥2 ≤ β2}. Then, for any ζ > 0,

T

∑
t=1

Zt1{∃f ′ ∈ Ft ∶ ∥f ′(xt) − f⋆(xt)∥ ≥ ζ} ≤ (
β2

ζ2
+ 1)E(F , ζ; f⋆).
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C. Selective Sampling
C.1. Comparison to Related Works

There is a large bank of both theoretical and empirical work for active learning and selective sampling. Perhaps the work
closest to ours that we will now compare to is Zhu & Nowak (2022). In this paper, the authors consider binary classification
problem and provide bounds on number of queries and bound on excess risk in the active learning framework. Their
algorithm also relies on regression oracle. However, there are many key differences. First, their guarantees for regret
for selective sampling problem (see for instance Theorem 10 on page 28 of Zhu & Nowak (2022)) has a dependence on
disagreement coefficient in the regret bound as well as number of queries. As we show in our work, one only needs to pay
for eluder dimension or disagreement coefficient in query complexity and not in regret bound. Further, we supplement our
result with lower bound showing that unless one has label complexity that depends on star number (and hence can be also
related to worst case disagreement coefficient), one cant get a small enough regret bound. So the separation between regret
bound (that is independent of eluder dimension/star number/disagreement coefficient) and query complexity (that depends
on those quantities) is real. Additionally the results in (Zhu & Nowak, 2022) dont automatically adapt to the margin region
and in general there is no way to estimate the parameters of Tsybakov’s noise condition. Finally their regret bounds depend
on pseudo dimension and is generally suboptimal for complex F .

C.2. Proof Sketch for Selective Sampling and Binary Labels

To illustrate our modeling assumptions, let us start with the simpler setting of binary actions A = {0,1}. In this case, we
assue that for any context x, the label y is drawn as yt ∼ Ber( 1+f

⋆(x)
2
) where f⋆ ∈ F for a given model class F ⊆ [−1,1]X .

While we defined F to be a real-valued function class for the ease of notation, we note that for any f ∈ F , the score on the
context x can be obtained as 1

2
(1 + f(x),1 − f(x))⊺ ∈ [0,1]2, and thus the Bayes optimal predictor that chooses the action

with the larger score is given by SelectAction(f⋆(x)) = sign(f⋆(x)). Furthermore, for the binary actions setting, the
natural notion of margin is defined as Margin(f⋆(x)) = ∣Pr(y = 1 ∣ x) −Pr(y = 0 ∣ x)∣ = ∣f⋆(x)∣, which implies that for
any ε > 0 and the observed context sequence {xt}t≤T , we set Tε = ∑T

t=1 1{∣f⋆(xt)∣ ≤ ε}.
For this simple model, we assume that we have access to an online square loss regression oracle w.r.t. F that for any
sequence {(x1, y1), . . . , (xT , yT )} guarantees the regret bound

T

∑
s=1
(fs(xs) − ys)2 − inf

f∈F

T

∑
s=1
(f(xs) − ys)2 ≤ Regsq(F ;T ). (8)

Before we go to the main result for binary actions and the proof sketch, we first remark that, by now, we have a relatively
complete characterization of what regret bounds Regsq(F ;T ) are possible for general function classes F . (Rakhlin
& Sridharan, 2014) characterize the minimax rates for online square loss regression in terms of the offset sequential
Rademacher complexity, thus giving favorable bounds for Regsq(F ;T ). For instance, for finite classes F we have
Regsq(F ;T ) ≤ O(log ∣F ∣) and for d dimensional linear classes it is give by Regsq(F ;T ) ≤ O(d log(T )). We also
refer the reader to (Krishnamurthy et al., 2017; Foster et al., 2018a; Foster & Rakhlin, 2020) for discussions on efficient
implementations.
Theorem 1 (Specialization for binary actions). Let δ ∈ (0,1). Under the modeling assumptions above, with probability at
least 1 − δ, Algorithm 1 run with A = {0,1} obtains the regret bound:

RegT = Õ(inf
ε
{εTε +

Regsq(F ;T )
ε

+ log(T/δ)}),

while simultaneously the total number of label queries made is bounded by:

NT = Õ(inf
ε
{Tε +

E(F , ε; f⋆) ⋅Regsq(F ;T )
ε2

+ log(T/δ)})

In the following, we provide an informal proof sketch for Theorem 1 (obtained by running Algorithm 1 with A = {0,1} and
γ = λ = 1). We first note that the regret bound in (8) for the online regression Oracle implies that:

t

∑
s=1

Zs(fs(xs) − f⋆(xs))2 ≲ Regsq(F ;T ) + log(T/δ), (9)
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The above implies that f⋆ satisfies the constraints in (5) and thus (See Lemma 10)

∣ft(xt) − f⋆(xt)∣ ≤∆t(xt). (10)

Now since our query condition was Zt = 1{∣ft(xt)∣ ≤ ∆t(xt)}, we have that if Zt = 0 , then sign of f⋆(xt) and
that of ft(xt) is the same and so our predictor matches π⋆. In other words, when we don’t query (ie. when Z̄t = 1,
π⋆(xt) ∶= sign(f⋆(xt)) = sign(ft(xt))).

Regret bound. Using the fact that yt ∼ Ber( 1+f
⋆(xt)
2
), ŷt = sign(ft(xt)), we note that

RegT =
T

∑
t=1

Pr(ŷt ≠ yt) −Pr(sign(f⋆(xt)) ≠ yt)

≤
T

∑
t=1

1{sign(ft(xt)) ≠ sign(f⋆(xt))} ⋅ ∣2Pr(yt = 1) − 1∣

=
T

∑
t=1

1{sign(ft(xt)) ≠ sign(f⋆(xt))} ⋅ ∣f⋆(xt)∣

One can further split the right hand side above and upper bound via the following three terms:

RegT ≤ ε
T

∑
t=1

1{∣f⋆(xt)∣ ≤ ε} +
T

∑
t=1

Zt1{sign(ft(xt)) ≠ sign(f⋆(xt)), ∣f⋆(xt)∣ > ε} ⋅ ∣f⋆(xt)∣

+
T

∑
t=1

Z̄t1{sign(ft(xt)) ≠ sign(f⋆(xt))} ⋅ ∣f⋆(xt)∣.

= εTε +
T

∑
t=1

Zt1{sign(ft(xt)) ≠ sign(f⋆(xt)), ∣f⋆(xt)∣ > ε} ⋅ ∣f⋆(xt)∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∶=TA

• TA denotes the regret for the rounds in which the learner queries for the label and the margin for f⋆(xt) is larger than
ε. We note that

TA =
T

∑
t=1

Zt1{sign(f⋆(xt)) ≠ sign(ft(xt)), ∣f⋆(xt)∣ > ε} ⋅ ∣f⋆(xt)∣

≤
T

∑
t=1

Zt1{∣f⋆(xt) − ft(xt)∣ > ε} ⋅ ∣f⋆(xt) − ft(xt)∣

where the last line just plugs in the fact that ∣f⋆(xt) − ft(xt)∣ ≥ ∣f⋆(xt)∣ since they have opposite signs. Using the fact
that 1{a ≥ b} ≤ a/b for all a, b ≥ 0 in the above, we get

TA ≤
1

ε

T

∑
t=1

Zt(f⋆(xt) − ft(xt))2 ≲ Regsq(F ;T ) + log(T/δ),

where the second inequality follows from (9).

Gathering the bounds above completes the proof for RegT .

Bound on NT . Plugging in the query rule, and splitting as in the regret bound, we get

NT =
T

∑
t=1

Zt =
T

∑
t=1

1{∣ft(xt)∣ ≤∆t(xt)}

≤
T

∑
t=1

1{∣f⋆(xt)∣ ≤ ε}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=Tε

+
T

∑
t=1

1{∣ft(xt)∣ ≤∆t(xt), ∣f⋆(xt)∣ > ε,∆t(xt) ≤ ε/3}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∶=TC
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+
T

∑
t=1

1{∣ft(xt)∣ ≤∆t(xt), ∣f⋆(xt)∣ > ε,∆t(xt) > ε/3}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∶=TD

• TC denotes the rounds in which we make a query, ∆t(xt) ≤ ε/3, and the margin for f⋆(xt) is larger than ε. From (10),
note that ∣ft(xt) − f⋆(xt)∣ ≤∆t(xt), which further implies that

∣f⋆(xt)∣ ≤ ∣ft(xt) − f⋆(xt)∣ + ∣ft(xt)∣ ≤∆t(xt) + ∣ft(xt)∣.

Thus,

TC ≤
T

∑
t=1

1{∣f⋆(xt)∣ ≤ 2∆t(xt), ∣f⋆(xt)∣ > ε,∆t(xt) ≤ ε/3} = 0.

• TD is bounded by the number of rounds for which we make a query and ∆t(xt) ≥ ε/3. Using the standard eluder
dimension machinery, we get that

TD ≤
T

∑
t=1

Zt1{∆t(xt) ≥ ε/3} ≲ 1

ε2
Regsq(F ;T ) ⋅E(F , ε/6; f⋆) + log(1/δ).

Gathering the above bounds completes the bound on NT .

C.3. Proof of Theorem 1

Before delving into the proof, we recall the relevant notation. In Algorithm 1,

• The label yt ∼ ϕ(f⋆(xt)), where ϕ denotes the link-function given in (2).

• The function SelectAction(ft(xt)) ∶= argmaxk ϕ(ft(xt))[k].

• For any vector v ∈ RK , the margin is given by the gap between the value at the largest and the second largest coordinate,
i.e.

Margin(v) = ϕ(v)[k⋆] −max
k≠k⋆

ϕ(v)[k],

where k⋆ ∈ argmaxk∈[K] ϕ(v)[k].

• We also define Tε = ∑T
t=1 1{Margin(f⋆(xt)) ≤ ε} to denote the number of samples within T rounds of interaction for

which the margin w.r.t. f⋆ is smaller than ε.

• We define the function Gap ∶ RK × [K]↦ R+ as

Gap(v, k) =max
k′

ϕ(v)[k′] − ϕ(v)[k], (11)

to denote the gap between the largest and the k-th coordinate of v.

C.3.1. SUPPORTING TECHNICAL RESULTS

The following lemma is immediate.
Lemma 9. For any u and k′ ≠ argmaxk ϕ(u)[k],

Margin(u) ≤ Gap(u, k′).

Proof. Let k⋆ = argmaxk ϕ(u)[k]. By definition,

Gap(u, k′) = ϕ(u)[k⋆] − ϕ(u)[k′]
≥ ϕ(u)[k⋆] −max

k′≠k
ϕ(u)[k′] = Margin(u).
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The following technical result establishes a certain favorable property for the function f⋆, whose proof follows from the
regret bound of the online oracle used in Algorithm 1.

Lemma 10. With probability at least 1 − δ, the function f⋆ ∈ F satisfies the following for all t ≤ T :

t

∑
s=1

Zs∥f⋆(xs) − fs(xs)∥2 ≤ Ψℓϕ
δ (F , T ),

where Ψ
ℓϕ
δ (F , T ) ∶=

4
λ
Regℓϕ(F ;T ) + 112

λ2 log(4 log2(T )/δ).

Proof. The desired result follows from an application of Lemma 5, where we note that we do not query oracle when Zs = 0,
and thus do not count the time steps for which Zs = 0.

Throughout the proof, we condition on the 1 − δ probability event that Lemma 10 holds. The next technical lemma allows
us to bound the number of times when we query for the label and ∆t(xt) ≥ ζ in terms of the eluder dimension (normed
version) of the function class F . Note that Lemma 11 holds even if the sequence {xt}t≤T could be adversarially generated.

Lemma 11. Let f⋆ satisfy Lemma 10, and let ∆t(xt) be defined in (5) in Algorithm 1. Then, for any ζ > 0, with probability
at least 1 − δ,

T

∑
t=1

Zt1{∆t(xt) ≥ ζ} ≤ Õ
⎛
⎝
Ψ

ℓϕ
δ (F , T )
ζ2

⋅E(F , ζ/2; f⋆)
⎞
⎠
.

where E denotes the eluder dimension is given in Definition 1.

Proof. Let f⋆t denote the maximizer of (5) at round t on point xt. Thus,

∆t(xt) = ∥f⋆t (xt) − ft(xt)∥, and
t−1
∑
s=1

Zs∥f⋆t (xs) − fs(xs)∥2 ≤ Ψℓϕ
δ (F , T ). (12)

However, recall that Lemma 10 implies that, with probability at least 1 − δ, the function f⋆ satisfies the bound

t−1
∑
s=1

Zs∥f⋆(xs) − fs(xs)∥2 ≤ Ψℓϕ
δ (F , T ). (13)

Using (12), (13) and Triangle inequality, we get that

t−1
∑
s=1

Zs∥f⋆t (xs) − f⋆(xs)∥2 ≤ 2
t−1
∑
s=1

Zs∥f⋆t (xt) − fs(xs)∥2 + 2
t−1
∑
s=1

Zs∥f⋆(xt) − fs(xs)∥2

≤ 4Ψℓϕ
δ (F , T ). (14)

Next, note that, an application of Triangle inequality implies that ∥f⋆t (xt)−ft(xt)∥ ≤ ∥f⋆t (xt)−f⋆(xt)∥+∥f⋆(xt)−ft(xt)∥.
Thus,

T

∑
t=1

Zt1{∆t(xt) ≥ ζ} =
T

∑
t=1

Zt1{∥f⋆t (xt) − ft(xt)∥ ≥ ζ}

≤
T

∑
t=1

Zt1{∥f⋆t (xt) − f⋆(xt)∥ + ∥f⋆(xt) − ft(xt)∥ ≥ ζ}

≤
T

∑
t=1

Zt1{∥f⋆t (xt) − f⋆(xt)∥ ≥
ζ

2
} +

T

∑
t=1

Zt1{∥ft(xt) − f⋆(xt)∥ ≥
ζ

2
}

≤
T

∑
t=1

Zt1{∥f⋆t (xt) − f⋆(xt)∥ ≥
ζ

2
} + 4

ζ2

T

∑
t=1

Zt(ft(xt) − f⋆(xt))2

≤
T

∑
t=1

Zt1{∥f⋆t (xt) − f⋆(xt)∥ ≥
ζ

2
} +

4Ψ
ℓϕ
δ (F , T )
ζ2

, (15)
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where in the last line we used Lemma 10 to bound the second term. In the following, we show how to bound the first term.
Recall that for any t ≤ T , the function f⋆t satisfies (14). Thus, we wish to bound

T

∑
t=1

Zt1{∥f⋆t (xt) − f⋆(xt)∥ ≥
ζ

2
} s.t.

t−1
∑
s=1

Zs(f⋆t (xs) − f⋆(xs))2 ≤ 4Ψℓϕ
δ (F , T ),

for all t ≤ T . An application of Lemma 8 in the above implies that

T

∑
t=1

Zt1{∥f⋆t (xt) − f⋆(xt)∥ ≥
ζ

2
} ≤

17Ψ
ℓϕ
δ (F , T )
ζ2

⋅E(F , ζ/2; f⋆). (16)

where in the last line, we used the fact that Ψ
ℓϕ
δ
(F,T )/ζ2 ≥ 1, for our parameter setting.

Plugging in the bound (16) in (15), and using the fact that E(F , ζ/2; f⋆) ≥ 1, we get that

T

∑
t=1

Zt1{∆t(xt) ≥ ζ} ≤
20Ψ

ℓϕ
δ (F , T )
ζ2

⋅E(F , ζ/2; f⋆).

The next two technical lemma’s relate the margin to the gap between functions, and are useful in the analysis for regret /
total number of queries.

Lemma 12. Suppose the functions π1 and π2 are defined such that πi(x) = argmaxk∈[K] ϕ(fi(x))[k]. Then, for any x for
which π1(x) ≠ π2(x), we have

Margin(f1(x)) ≤ ϕ(f1(x))[π1(x)] − ϕ(f1(x))[π2(x)] ≤ 2γ∥f1(x) − f2(x)∥2,

where γ-denotes the Lipschitz parameter of the link function ϕ.

Proof. First note ϕ(f2(x))[π2(x)] ≥ ϕ(f2(x))[π1(x)] by the definition of π2. Thus,

ϕ(f1(x))[π1(x)] − ϕ(f1(x))[π2(x)]
≤ ϕ(f1(x))[π1(x)] − ϕ(f2(x))[π1(x)] + ϕ(f2(x))[π2(x)] − ϕ(f1(x))[π2(x)]
≤ 2∥ϕ(f1(x)) − ϕ(f2(x))∥∞
≤ 2∥ϕ(f1(x)) − ϕ(f2(x))∥2.

Using the fact that ϕ is γ-Lipschitz, we immediately get that

ϕ(f1(x))[π1(x)] − ϕ(f1(x))[π2(x)] ≤ 2γ∥f1(x) − f2(x)∥2.

Lemma 13. For any two function f1, f2 ∈ F , and x ∈ X ,

Margin(f1(x)) − Margin(f2(x)) ≤ 2γ∥f1(x) − f2(x)∥.

Proof. For the ease of notation, define

k1 = argmax
k∈[k]

ϕ(f1(x))[k] and k′1 = argmax
k′≠k1

ϕ(f1(x))[k′],

where ties are broken arbitrarily but consistently. Similarly, we define

k2 = argmax
k∈[k]

ϕ(f2(x))[k] and k′2 = argmax
k′≠k2

ϕ(f2(x))[k′]. (17)
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Thus, we have that

Margin(f1(x)) = ϕ(f1(x))[k1] − ϕ(f1(x))[k′1],

and

Margin(f2(x)) = ϕ(f2(x))[k2] − ϕ(f2(x))[k′2]. (18)

Finally, also note that for any coordinate k,

ϕ(f1(x))[k] − ϕ(f2(x))[k] ≤ ∥ϕ(f2(x)) − ϕ(f1(x))∥. (19)

We now proceed with the proof. Plugging in the form in (18), we get that

Margin(f1(x)) − Margin(f2(x))
= ϕ(f1(x))[k1] − ϕ(f1(x))[k′1] − (ϕ(f2(x))[k2] − ϕ(f2(x))[k′2])
= (ϕ(f1(x))[k1] − ϕ(f2(x))[k2]) + (ϕ(f2(x))[k′2] − ϕ(f1(x))[k′1])
≤ (ϕ(f1(x))[k1] − ϕ(f2(x))[k1]) + (ϕ(f2(x))[k′2] − ϕ(f1(x))[k′1])
≤ ∥ϕ(f2(x)) − ϕ(f1(x))∥ + (ϕ(f2(x))[k′2] − ϕ(f1(x))[k′1]),

where the first inequality uses the fact that k2 is the maximizer coordinate of ϕ(f2(x)) and the last inequality uses (19). In
the following, we bound the second term in the right hand side above under the following three cases:

● Case 1: k′2 ≠ k1: Since k′2 ≠ k1, we note that replacing k′1 by k′2 in the second term will only increase the value (see the
definition in (17)). Thus,

ϕ(f2(x))[k′2] − ϕ(f1(x))[k′1] ≤ ϕ(f2(x))[k′2] − ϕ(f1(x))[k′2]
≤ ∥ϕ(f2(x)) − ϕ(f1(x))∥,

where the last line uses (19).

● Case 2a: k′2 = k1, k2 = k′1: Using definition of k2 in (17), we note that

ϕ(f2(x))[k′2] − ϕ(f1(x))[k′1] = ϕ(f2(x))[k′2] − ϕ(f1(x))[k2]
≤ ϕ(f2(x))[k2] − ϕ(f1(x))[k2]
≤ ∥ϕ(f2(x)) − ϕ(f1(x))∥,

where the last line uses (19).

● Case 2b: k′2 = k1, k2 ≠ k′1: Using the fact that k′2 = k1 and that k2 ≠ k′2, we get that k2 ≠ k1. Thus using the definition
of k′1 along with the fact that k2 ≠ k1, we get that

ϕ(f2(x))[k′2] − ϕ(f1(x))[k′1] ≤ ϕ(f2(x))[k′2] − ϕ(f1(x))[k2]
≤ ϕ(f2(x))[k2] − ϕ(f1(x))[k2]
≤ ∥ϕ(f2(x)) − ϕ(f1(x))∥,

where the second last line uses definition of k2 and the last line uses (19).

Combining all the above bounds together implies that

Margin(f1(x)) − Margin(f2(x)) ≤ 2∥ϕ(f2(x)) − ϕ(f1(x))∥.

The final statement follows since ϕ is γ-Lipschitz.
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C.3.2. REGRET BOUND

For the ease of notation, for the rest of the proof in this section we define the function π⋆ such that

π⋆(x) = argmax
k

ϕ(f⋆(x))[k].

Additionally, we recall that for any time t, ŷt = SelectAction(ft(xt)) = argmaxk ϕ(ft(x))[k]. Starting from the
definition of the regret, we have

RegT =
T

∑
t=1

Pr(ŷt ≠ yt) −Pr(π⋆(xt) ≠ yt)

=
T

∑
t=1

1{ŷt ≠ π⋆(xt)} ⋅ ∣Pr(yt = π⋆(xt)) −Pr(yt = ŷt)∣

=
T

∑
t=1

1{ŷt ≠ π⋆(xt)} ⋅ ∣ϕ(f⋆(xt))[π⋆(xt)] − ϕ(f⋆(xt))[ŷt]∣

≤
T

∑
t=1

1{ŷt ≠ π⋆(xt)} ⋅Gap(f⋆(xt), ŷt),

where the second last line uses the probabilistic model from which labels are generated, and the last inequality plugs in the
definition of Gap from (42). We can decompose the above regret bound further as:

RegT ≤
T

∑
t=1

1{ŷt ≠ π⋆(xt),Gap(f⋆(xt), ŷt) ≤ ε} ⋅Gap(f⋆(xt), ŷt)

+
T

∑
t=1

1{ŷt ≠ π⋆(xt),Gap(f⋆(xt), ŷt) > ε} ⋅Gap(f⋆(xt), ŷt)

Using the fact that yt(xt) = argmaxk∈[K] ϕ(ft(x))[k] along with the definition of Gap and Lemma 12, we get that

RegT ≤
T

∑
t=1

1{ŷt ≠ π⋆(xt),Gap(f⋆(xt), ŷt) ≤ ε} ⋅ ε

+ 2γ
T

∑
t=1

1{ŷt ≠ π⋆(xt),Gap(f⋆(xt), ŷt) > ε} ⋅ ∥f⋆(xt) − ft(xt)∥

≤
T

∑
t=1

1{Margin(f⋆(xt)) ≤ ε} ⋅ ε

+ 2γ
T

∑
t=1

1{ŷt ≠ π⋆(xt),Gap(f⋆(xt), ŷt) > ε} ⋅ ∥f⋆(xt) − ft(xt)∥

≤
T

∑
t=1

1{Margin(f⋆(xt)) ≤ ε} ⋅ ε

+ 2γ
T

∑
t=1

Zt1{ŷt ≠ π⋆(xt),Gap(f⋆(xt), ŷt) > ε} ⋅ ∥f⋆(xt) − ft(xt)∥

+ 2γ
T

∑
t=1

Z̄t1{ŷt ≠ π⋆(xt)} ⋅ ∥f⋆(xt) − ft(xt)∥ (20)

= Tε ⋅ ε + 2γ ⋅ TA + 2γ ⋅ TB ⋅ ∥f⋆(xt) − ft(xt)∥,

where the second inequality holds because Gap(f⋆(xt), ŷt) ≤ ε implies that Margin(f⋆(xt)) ≤ ε whenever ŷt ≠ π⋆(xt).
In the last line above, we plugged in the definition of Tε, and defined TA and TB as the second term and the last term
respectively (upto constants). We bound them separately below:

● Bound on TA: We note that

TA =
T

∑
t=1

Zt1{ŷt ≠ π⋆(xt),Gap(f⋆(xt), ŷt) > ε} ⋅ ∥f⋆(xt) − ft(xt)∥
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≤
T

∑
t=1

Zt1{∥f⋆(xt) − ft(xt)∥ > ε/2γ} ⋅ ∥f⋆(xt) − ft(xt)∥

where the second line follows from Lemma 12 and because ŷt ≠ π⋆(xt). Using the fact that 1{a ≥ b} ≤ a/b for all
a, b ≥ 0, we get that

TA ≤ 4γ
T

∑
t=1

Zt
∥f⋆(xt) − ft(xt)∥2

ε
. (21)

● Bound on TB: Fix any t ≤ T , and note that Lemma 10 implies that ∑t
s=1∥f⋆(xt) − ft(xt)∥2 ≤ Ψℓϕ

δ (F , T ). Thus f⋆

satisfies the constraint in the definition of ∆t in (5) and we must have that

∥f⋆(xt) − ft(xt)∥ ≤∆t(xt). (22)

Plugging in the definition of Zt, we note that

TB =
T

∑
t=1

1{Margin(ft(xt)) > 2γ∆t(xt), ŷt ≠ π⋆(xt)}

≤
T

∑
t=1

1{∥ft(xt) − f⋆(xt)∥ >∆t(xt)},

where the second inequality is due Lemma 12. However, note that the term inside the indicator contradicts (22) (which
always holds). Thus,

TB = 0. (23)

Combining the bounds (21) and (23), we get that

RegT ≤ εTε + 8γ2
T

∑
t=1

Zt
∥ft(xt) − f⋆(xt)∥2

ε

≤ εTε +
8γ2

ε
Ψ

ℓϕ
δ (F , T ),

where the last inequality is due to Lemma 10.

Since ε is a free parameter above, the final bound follows by choosing the best parameter ε, and by plugging in the form of
Ψ

ℓϕ
δ (F , T ).

C.3.3. TOTAL NUMBER OF QUERIES

We use the notation NT to denote the total number of expert queries made by the learner within T rounds of interactions.
Using the definition of Zt, we have that

NT =
T

∑
t=1

Zt

=
T

∑
t=1

1{Margin(ft(xt)) ≤ 2γ∆t(xt)}

=
T

∑
t=1

1{Margin(ft(xt)) ≤ 2γ∆t(xt),Margin(f⋆(xt)) ≤ ε}

+
T

∑
t=1

1{Margin(ft(xt)) ≤ 2γ∆t(xt),Margin(f⋆(xt)) > ε}

≤
T

∑
t=1

1{Margin(f⋆(xt)) ≤ ε}
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+
T

∑
t=1

1{Margin(ft(xt)) ≤ 2γ∆t(xt),Margin(f⋆(xt)) > ε,∆t(xt) ≤ ε/4γ}

+
T

∑
t=1

1{Margin(ft(xt)) ≤ 2γ∆t(xt),Margin(f⋆(xt)) > ε,∆t(xt) > ε/4γ} (24)

= Tε + TD + TE ,

where in the last line we use the definition of Tε, and defined TD and TE respectively. We bound them separately below:

● Bound on the term TD. Recall (22) which implies that f⋆ satisfies the bound ∥ft(xt)− f⋆(xt)∥ ≤∆t(xt). Thus, using
Lemma 13, we get that

Margin(f⋆(xt)) ≤ 2γ∥ft(xt) − f⋆(xt)∥ + tMargin(ft(xt)) ≤ 2γ∆t(xt) + Margin(ft(xt)).

The above implies that

TD =
T

∑
t=1

1{Margin(ft(xt)) ≤ 2γ∆t(xt),Margin(f⋆(xt)) > ε,∆t(xt) ≤ ε/4γ}

≤
T

∑
t=1

1{Margin(f⋆(xt)) ≤ 4γ∆t(xt),Margin(f⋆(xt)) > ε,∆t(xt) ≤ ε/4γ}

≤ 0,

where the last line follows from the fact that all the conditions inside the indictor can not hold simultaneously.

● Bound on the term TE . We note that

TE =
T

∑
t=1

1{Margin(ft(xt)) ≤ 2γ∆t(xt),Margin(f⋆(xt)) > ε,∆t(xt) > ε/4γ}

≤
T

∑
t=1

Zt1{∆t(xt) ≥ ε/4γ}

≤
320Ψ

ℓϕ
δ (F , T )
ε2

⋅E(F , ε/4γ; f⋆).

where the last line follows from setting ζ = ε/4γ in Lemma 11.

Gathering the bounds above, we get that

NT ≤ Tε +
640γ2Ψ

ℓϕ
δ (F , T )
ε2

⋅E(F , ε/4γ; f⋆).

Since ε is a free parameter above, the final bound follows by choosing the best parameter ε, and by plugging in the form of
Ψ

ℓϕ
δ (F , T ).

C.4. Proof of Theorem 2

Before delving into the proof, we recall the relevant notation. In Algorithm 3,

• The label yt ∼ ϕ(f⋆(xt)), where ϕ denotes the link-function given in (2).

• The function SelectAction(ft(xt)) ∶= argmaxk ϕ(ft(xt))[k].

• For any vector v ∈ RK , the margin is given by the gap between the value at the largest and the second largest coordinate,
i.e.

Margin(v) = ϕ(v)[k⋆] −max
k≠k⋆

ϕ(v)[k],

where k⋆ ∈ argmaxk∈[K] ϕ(v)[k].
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Algorithm 3 Selective Sampling for Stochastic Setting, Action Set A = [K]
Require: Parameters δ, γ, λ, T , function class F , and online regression oracle Oracle w.r.t ℓϕ.

1: Set Ψℓϕ
δ (F , T ) =

4
λ
Regℓϕ(F ;T ) + 112

λ2 log(4 log2(T )/δ), Compute f1 ← Oracle1(∅).
2: Set E = ⌈log(T )⌉ and τe = 2e−1 for e ≤ E.
3: for e = 1, . . . ,E − 1 do
4: Learner constructs the feasible set of optimal functions Fe as

Fe = {f ∈ F ∣
τe−1
∑
s=1

Zs∥f(xs) − fs(xs)∥2 ≤ Ψℓϕ
δ (F , T )}. (25)

5: for t ← τe to τe+1 − 1 do
6: Nature samples xt from an (unknown) distribution µ.
7: Learner computes

gt ∈ argmin
g∈Fe

Margin(g(xt)), and, ∆e(xt) ∶= max
f,f ′∈Fe

∥f(xt) − f ′(xt)∥. (26)

8: Learner decides whether to query: Zt = 1{Margin(gt(xt)) ≤ 2γ∆e(xt)}.
9: if Zt = 1 then

10: Learner plays the action ŷt = SelectAction(ft(xt)).
11: Learner queries the label yt on xt.
12: ft+1 ← Oraclet({xt, yt}).
13: else
14: Learner plays the action ŷt = SelectAction(gt(xt)).
15: ft+1 ← ft.
16: end if
17: end for
18: end for

• We also define Tε = ∑T
t=1 1{Margin(f⋆(xt)) ≤ ε} to denote the number of samples within T rounds of interaction for

which the margin w.r.t. f⋆ is smaller than ε.

• We define the function Gap ∶ RK × [K]↦ R+ as

Gap(v, k) =max
k′

ϕ(v)[k′] − ϕ(v)[k], (27)

to denote the gap between the largest and the k-th coordinate of v. Recall that Lemma 9 holds.

• Additionally, we define the function Ze to denote the query condition

Ze(x) = 1{ inf
g∈Fe

Margin(g(x)) ≤ 2γ sup
f,f ′∈Fe

∥f(x) − f ′(x)∥}. (28)

The definition in (28) suggests that for all t ∈ [τe, τe+1), Zt = Ze(xt), for all e ≤ E − 1.

Intuition for epoching. We next provide intuition on why epoching in needed in Algorithm 3 to get the improved
query complexity bound. From the proof sketch in Section C.2, the term ∑T

t=1Zt1{∆t(xt) ≥ ε} appearing in the query
complexity bound is handled using the eluder dimension of F . When xt is sampled i.i.d. we wish to bound this using
disagreement-coefficient instead. However, note that in Algorithm 1 the query condition Zt depends on the samples {xs}s<t
drawn in all previous time steps and the corresponding query conditions {Zs}s<t. This introduces a bias, and thus the terms
Zt1{∆t(xt) ≥ ε} are no longer independent to each other. Thus, we can not directly used distributional properties like the
disagreement coefficient to bound the query complexity. Algorithm 3 fixes this issue by defining epochs of doubling length
such that the query condition in epoch e only depends on the samples presented to the learner at time steps before this epoch
(i.e. in time steps 1 ≤ t ≤ τe − 1. Thus, the terms Zt1{∆t(xt) ≥ ε} for τe ≤ t < τe+1 are i.i.d. allowing us to get bounds in
terms of distributional properties like the disagreement coefficient of F .

However, note that whenever we query in Algorithm 3, we still choose the labels according to the estimate from the online
regression oracle and thus the regret bound remains unchanged.
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C.4.1. SUPPORTING TECHNICAL RESULTS

The following lemma establishes useful technical properties of the function f⋆ and the sets Fe.

Lemma 14. Suppose Algorithm 3 is run on the sequence {xt}t≤T drawn i.i.d. from the unknown distribution µ. Then, with
probability at least 1 − δ, each of the following holds:

(a) For all t ≤ T , the function f⋆ ∈ F satisfies

t

∑
s=1

Zs∥f⋆(xs) − fs(xs)∥2 ≤ Ψℓϕ
δ (F , T ),

where Ψ
ℓϕ
δ (F , T ) =

4
λ
Regℓϕ(F ;T ) + 112

λ2 log(4 log2(T )/δ).
Thus, f⋆ ∈ Fe for all e ≤ E − 1, and ∥f⋆(xt) − gt(xt)∥ ≤∆e(xt) for all τe ≤ t ≤ τe+1 − 1.

(b) For any function f ∈ Fe, we have

E[
τe−1
∑
s=1

Zs∥f(xs) − f⋆(xs)∥2] ≤ Ψ̂ℓϕ
δ (F ;T ),

where Ψ̂
ℓϕ
δ (F ;T ) ∶= 2Ψ

ℓϕ
δ (F , T ) + 4c2(log

4(T ) supτ≤T (τR2
τ(F)) + 2 log(T ) log(E/δ)).

(c) For any e ≤ E, and any function f ∈ Fe, we have

∥f(xs) − f⋆(xs)∥ν̄e
≤

¿
ÁÁÀ Ψ̂

ℓϕ
δ (F ;T )
τe − 1

where the sub-distributions µ̄ē(x) ∶= Z ē(x)µ(x) and ν̄e ∶= 1
τe−τ1 ∑

e−1
ē=1(τē+1 − τē)µ̄ē.

(d) For any ē < e, the corresponding sets Fe and Fē satisfy the relation Fe ⊆ Fē.

(e) For any ē ≤ e, we have µ̄e ≼ µ̄ē.

Proof. We prove each part separately below:

(a) An application of Lemma 5, where we note that we do not query oracle when Zs = 0, and thus do not count the time
steps for which Zs = 0, implies that

t

∑
s=1

Zs∥f⋆(xs) − fs(xs)∥2 ≤
4

λ
Regℓϕ(F ;T ) + 112

λ2
log(4 log2(T )/δ) =∶ Ψℓϕ

δ (F , T )

for all t ≤ T with probability at least 1 − δ. Using the above for t = τe+1 − 1 implies that f⋆ ∈ Fe for all e ≤ E − 1.
Since, we also have that gt ∈ Fe (by construction) for all τe ≤ t ≤ τe+1 − 1, plugging in the definition of ∆e(xt), we
immediately get that ∥f⋆(xt) − gt(xt)∥ ≤∆e(xt).

(b) Fix any epoch number ē ≤ E − 1, and consider the time steps τē ≤ t < τē+1. Define the loss function

ℓē(f(x), f⋆(x)) = Z ē(x)∥f(x) − f⋆(x)∥2

where Z ē denotes the query conditions at epoch ē (defined in (28)), and recall that Z ē does not depend on any samples
that are drawn at epoch ē (by definition). Furthermore, note that ℓē is 2-smooth w.r.t. f and satisfies ℓē(f(x), f⋆(x)) ≤ 4
for all f, f⋆ ∈ F and x. Thus using Lemma 2, we get that for any f ∈ Fe, with probability at least 1 − δ/E,

E[
τē+1−1
∑
s=τē

Z ē(xs)∥f(xs) − f⋆(xs)∥2]

≤ 2
τē+1−1
∑
s=τē

Z ē(xs)∥f(xs) − f⋆(xs)∥2 + c2(2τe log3(τe)R2
τe(Fe) + 4 log(E/δ))
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≤ 2
τē+1−1
∑
s=τē

Z ē(xs)∥f(xs) − f⋆(xs)∥2 + 2c2(log3(T ) sup
τ≤T
(τR2

τ(F)) + 2 log(E/δ)),

where in the last line we used the fact that Fe ⊆ F . Summing the above for all ē ≤ e − 1, we get that for any f ∈ Fe,

E[
τe−1
∑
t=1

Ze(xs)∥f(xs) − f⋆(xs)∥2]

≤ 2
τe−1
∑
t=1

Ze(xs)∥f(xs) − f⋆(xs)∥2 + 4c2E(log3(T ) sup
τ≤T
(τR2

τ(F)) + 2 log(E/δ))

≤ 2Ψℓϕ
δ (F , T ) + 4c2(log

4(T ) sup
τ≤T
(τR2

τ(F)) + 2 log(T ) log(E/δ)),

where the last line follows by using the definition of Fe, and that E ≤ ⌈log(T )⌉, and that Fe ⊆ F .

(c) Starting from part-(b), we first note that

E[
τe−1
∑
s=1

Zs∥f(xs) − f⋆(xs)∥2] ≤ Ψ̂ℓϕ
δ (F ;T ). (29)

Additionally, also note that

E[
τe−1
∑
s=1

Zs∥f(xs) − f⋆(xs)∥2] = E[
e−1
∑
ē=1

τē+1−1
∑
s=τē

Zs∥f(xs) − f⋆(xs)∥2]

= E[
e−1
∑
ē=1

τē+1−1
∑
s=τē

Z ē(xs)∥f(xs) − f⋆(xs)∥2]

=
e−1
∑
ē=1

τē+1−1
∑
s=τē

Exs∼µ[Z ē(xs)∥f(xs) − f⋆(xs)∥2]

=
e−1
∑
ē=1
(τē+1 − τē)Ex∼µ[Z ē(x)∥f(x) − f⋆(x)∥2],

where the last two lines use the fact that the query condition Z ē does not depend on the samples from rounds t = τē to
τē+1 − 1. Plugging in the definition of µ̄ē in the above, we get that

E[
τe−1
∑
s=1

Zs∥f(xs) − f⋆(xs)∥2] =
e−1
∑
ē=1
(τē+1 − τē) ⋅Ex∼µ̄ē[∥f(xs) − f⋆(xs)∥2]

= (τe − τ1) ⋅Ex∼ν̄e[∥f(xs) − f⋆(xs)∥2]

= (τe − τ1) ⋅ ∥f(xs) − f⋆(xs)∥2ν̄e
, (30)

where in the second line, we used the fact that the sub-distribution ν̄e ∶= 1
τe−τ1 ∑

e−1
ē=1(τē+1 − τē)µ̄ē.

Combining (29) and (30), we get that

∥f(xs) − f⋆(xs)∥ν̄e
≤

¿
ÁÁÀ Ψ̂

ℓϕ
δ (F ;T )
τe − 1

(d) The argument follows from the definition of the set Fe as any function f ∈ Fe that satisfies

τe−1
∑
s=1

Zs∥f(xs) − fs(xs)∥2 ≤ Ψℓϕ
δ (F , T ),

also satisfies the constraint
τē−1
∑
s=1

Zs∥f(xs) − fs(xs)∥2 ≤ Ψℓϕ
δ (F , T ),

for any ē ≤ e, since the left hand side consists of lesser number of terms and all terms are non-negative. Thus, Fe ⊆ Fē.
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(e) Recall that for any e ≤ E − 1, the sub-probability measure µ̄e(x) ∶= Ze(x)µ(x) where Ze(x) = 1{ming∈Fe∥g(x)∥ ≤
∆e(x)}, and ∆e(x) =maxf ′,f∈Fe ∥f(x) − f ′(x)∥. First note that for any ē ≤ e,

∆e(x) = max
f ′,f∈Fe

∥f(x) − f ′(x)∥ ≤ max
f ′,f∈Fē

∥f(x) − f ′(x)∥ =∆ē(x),

where the inequality above holds because Fe ⊆ Fē due to part-(d) above. Furthermore,

min
g∈Fe

∥g(x)∥ ≥ min
g∈Fē

∥g(x)∥,

again because Fe ⊆ Fē. Thus,

Ze(x) = 1{min
g∈Fe

∥g(x)∥ ≤∆e(x)} ≤ 1{min
g∈Fē

∥g(x)∥ ≤∆ē(x)} ≤ Z ē(x).

The above implies that µ̄e ≤ µ̄ē.

Lemma 15. Let ε0, γ0 ≥ 0, and f⋆ ∈ F . Then, for any sub distribution µ̄ such that Ex∼µ̄[1{x ∈ X}] > 0, ε ≥ ε0 and γ ≥ γ0,

ε2

γ2
Prx∼µ̄(∃f ∈ F ∶ ∥f(x) − f⋆(x)∥ > ε, ∥f(xs) − f⋆(xs)∥µ̄ ≤ γ) ≤ θ

val(F , ε0, γ0; f⋆).

Proof. The key idea in the proof is to go from sub distributions to distributions, and then invoking the definition of θ from
Definition 2. Define κ = Ex∼µ̄[1{x ∈ X}]. Since 0 < κ ≤ 1, we can define a probability measure µ such that µ(x) = µ̄(x)/κ.
Thus, for any ε ≥ ε0 and γ ≥ γ0,

ε2

γ2
Prx∼µ̄(∃f ∈ F ∶ ∥f(x) − f⋆(x)∥ > ε, ∥f(xs) − f⋆(xs)∥µ̄ ≤ γ)

= ε2

γ2/k
Prx∼µ(∃f ∈ F ∶ ∥f(x) − f⋆(x)∥ > ε, ∥f(xs) − f⋆(xs)∥µ̄ ≤ γ)

≤ ε2

γ2/k
Prx∼µ(∃f ∈ F ∶ ∥f(x) − f⋆(x)∥ > ε, ∥f(xs) − f⋆(xs)∥µ ≤ γ/√k)

= ε2

γ̄2
Prx∼µ(∃f ∈ F ∶ ∥f(x) − f⋆(x)∥ > ε, ∥f(xs) − f⋆(xs)∥µ ≤ γ̄)

≤ sup
ε≥ε0,γ̄≥γ0

ε2

γ̄2
Prx∼µ(∃f ∈ F ∶ ∥f(x) − f⋆(x)∥ > ε, ∥f(xs) − f⋆(xs)∥µ ≤ γ̄),

where in the second last line, we defined γ̄ = γ/√k, and the last line used the fact that both ε ≥ ε0 and γ̄ ≥ γ0. The final
statement follows by noting the fact that µ is a distribution and the definition of the disagreement coefficient θval(; ) from
Definition 2.

The following technical result will be useful in bounding the query complexity for Algorithm 3.

Lemma 16. For any t ≤ T , let e(t) denotes the epoch number such that τe(t) ≤ t < τe(t)+1. Let f⋆ ∈ F satisfy Lemma 14,
and let ∆e(t)(xt) be defined in Algorithm 3. Then, for any ζ > 0, with probability at least 1 − δ,

T

∑
t=1

Zt1{∆e(t)(xt) ≥ ζ} ≤ 12 log(T ) ⋅
Ψ̂

ℓϕ
δ (F ;T )
ζ2

⋅ θval
⎛
⎝
F , ζ

2
,
Ψ̂

ℓϕ
δ (F ;T )

T
; f⋆
⎞
⎠
+ 4 log(2/δ).

Proof. Recall the definition of the query rule Ze given in (28), and note that the function Ze is independent of the samples
{xt}τe+1−1t=τe chosen by the nature for time steps at epoch e. Additionally, also recall that at every time step, xt is sampled
independently from the distribution µ. Thus, using the query condition Ze, we can define the sub-probability measure

µ̄e ∶= µ(x)Ze(x), (31)
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such that µ̄e(x) = µ(x)whenever Ze(x) = 1 and is 0 otherwise. Furthermore, for any e ∈ E−1, we define the sub-probability
measure ν̄e as

ν̄e =
1

τe − τ1

e−1
∑
ē=1
(τē+1 − τē)µ̄ē. (32)

We now move to the main proof. First fix any epoch e ≤ E −1, and consider any round t ∈ [τe, τe+1 −1]. Using the definition
of ∆e(xt) and definition of Ze from (28) in the above, we get that

Ext∼µ[Zt1{∆e(xt) > ζ}] = Ex∼µ[Ze(xt)1{ sup
f,f ′∈Fe

∥f(xt) − f ′(xt)∥ > ζ}]

≤ Ex∼µ[Ze(xt)1{ sup
f∈Fe

∥f(xt) − f⋆(xt)∥ >
ζ

2
}]

where the second line follows because f⋆ ∈ Fe, and because supf,f ′∈Fe
∥f(xt)− f ′(xt)∥ ≤ 2 supf∈Fe

∥f(xt)− f⋆(xt)∥ due
to Triangle inequality. Plugging in the definition of µ̄e from (31) in the above we get that

Ext∼µ[Zt1{∆e(xt) > ζ}] ≤ Ex∼µ̄e[1{ sup
f∈Fe

∥f(xt) − f⋆(xt)∥ >
ζ

2
}]

≤ Ex∼µ̄ē[1{ sup
f∈Fe

∥f(xt) − f⋆(xt)∥ >
ζ

2
}]. (33)

for all ē ≤ e, where the last inequality follows from Lemma 14-(e). Since the above holds for all ē ≤ e, we immediately get
that

Ext∼µ[Zt1{∆e(xt) > ζ}] ≤ Ex∼ν̄ē[1{ sup
f∈Fe

∥f(xt) − f⋆(xt)∥ >
ζ

2
}]

= Ex∼ν̄ē[1{∃f ∈ Fe ∶ ∥f(x) − f⋆(x)∥ >
ζ

2
}], (34)

where the sub-probability measure ν̄ē is defined in (32). Additionally, recall that Lemma 14-(b) implies that with probability
at least 1 − δ any f ∈ Fe satisfies

∥f(xs) − f⋆(xs)∥ν̄e
≤

¿
ÁÁÀ Ψ̂

ℓϕ
δ (F ;T )
τe − 1

. (35)

Conditioning on the above event, and plugging it in (34), we get that

Ext∼µ[Zt1{∆e(xt) > ζ}]

≤ Ex∼ν̄ē

⎡⎢⎢⎢⎢⎢⎣
1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∃f ∈ Fe ∶ ∥f(x) − f⋆(x)∥ >

ζ

2
, ∥f(xs) − f⋆(xs)∥ν̄e

≤

¿
ÁÁÀ Ψ̂

ℓϕ
δ (F ;T )
τe − 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎤⎥⎥⎥⎥⎥⎦

≤ 4 ⋅
Ψ̂

ℓϕ
δ (F ;T )
(τe − 1)ζ2

⋅ θval
⎛
⎝
F , ζ

2
,
Ψ̂

ℓϕ
δ (F ;T )
τe − 1

; f⋆
⎞
⎠
, (36)

where the last inequality uses Lemma 15.

Summing up the bound in (36) for each term t = 1 to T , we get that

T

∑
t=1

Ext[Zt1{∆e(xt) > ζ}] =
E−1
∑
e=1

τe+1−1
∑
t=τe

Ext[Zt1{∆e(xt) > ζ}]

≤ 4
E−1
∑
e=1
(τe+1 − τe)

Ψ̂
ℓϕ
δ (F ;T )
(τe − 1)ζ2

⋅ θval
⎛
⎝
F , ζ

2
,
Ψ̂

ℓϕ
δ (F ;T )
τe − 1

; f⋆
⎞
⎠
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≤ 8
E−1
∑
e=1

Ψ̂
ℓϕ
δ (F ;T )
ζ2

⋅ θval
⎛
⎝
F , ζ

2
,
Ψ̂

ℓϕ
δ (F ;T )
τe − 1

; f⋆
⎞
⎠

≤ 8
E−1
∑
e=1

Ψ̂
ℓϕ
δ (F ;T )
ζ2

⋅ θval
⎛
⎝
F , ζ

2
,
Ψ̂

ℓϕ
δ (F ;T )

T
; f⋆
⎞
⎠

≤ 8 log(T ) ⋅
Ψ̂

ℓϕ
δ (F ;T )
ζ2

⋅ θval
⎛
⎝
F , ζ

2
,
Ψ̂

ℓϕ
δ (F ;T )

T
; f⋆
⎞
⎠

where the second inequality uses the fact that τe+1 = 2τe and that τ1 = 1, the third inequality holds due to monotonicity of
θval(F , ζ

2
, ⋅; f⋆) and the last line simply plugs in the value of E = log(T ).

Using Lemma 4 with the above bound for the sequence of random variable Xt = Zt1{∆e(xt) > ζ}, we get that with
probability at least 1 − δ,

T

∑
t=1

Zt1{∆e(xt) > ζ} ≤
3

2

T

∑
t=1

Ext[Zt1{∆e(xt) > ζ}] + 4 log(2/δ)

≤ 12 log(T ) ⋅
Ψ̂

ℓϕ
δ (F ;T )
ζ2

⋅ θval
⎛
⎝
F , ζ

2
,
Ψ̂

ℓϕ
δ (F ;T )

T
; f⋆
⎞
⎠
+ 4 log(2/δ).

The final result follows by taking a union bound of the above and the event in (35).

C.4.2. REGRET BOUND

For the ease of notation, through the proofs in this section we define the operators y⋆ as

y⋆(x) = argmax
k

ϕ(f⋆(x))[k].

Furthermore, recall that ŷt denotes the action chosen by the learner at round t of interaction. Starting from the definition of
the regret, we get that

RegT =
T

∑
t=1

Pr(ŷt ≠ yt) −Pr(y⋆(xt) ≠ yt)

=
T

∑
t=1

1{ŷt ≠ y⋆(xt)} ⋅ ∣Pr(yt = y⋆(xt)) −Pr(yt = ŷt)∣

=
T

∑
t=1

1{ŷt ≠ y⋆(xt)} ⋅ ∣ϕ(f⋆(xt))[y⋆(xt)] − ϕ(f⋆(xt))[ŷt]∣

≤
T

∑
t=1

1{ŷt ≠ y⋆(xt)} ⋅Gap(f⋆(xt), ŷt),

where the last inequality plugs in the definition of Gap from (42). We can decompose the above regret bound further as:

RegT ≤
T

∑
t=1

1{ŷt ≠ y⋆(xt),Gap(f⋆(xt), ŷt) ≤ ε} ⋅Gap(f⋆(xt), ŷt)

+
T

∑
t=1

1{ŷt ≠ y⋆(xt),Gap(f⋆(xt), ŷt) > ε} ⋅Gap(f⋆(xt), ŷt)

Using the fact that yt(xt) = argmaxk∈[K] ϕ(ft(x))[k] in the above along with the definition of Gap and Lemma 12, we
get that

RegT ≤
T

∑
t=1

1{ŷt ≠ y⋆(xt),Gap(f⋆(xt), ŷt) ≤ ε} ⋅ ε
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+ 2γ
T

∑
t=1

1{ŷt ≠ y⋆(xt),Gap(f⋆(xt), ŷt) > ε} ⋅ ∥f⋆(xt) − ft(xt)∥

≤
T

∑
t=1

1{Margin(f⋆(xt)) ≤ ε} ⋅ ε

+ 2γ
T

∑
t=1

1{ŷt ≠ y⋆(xt),Gap(f⋆(xt), ŷt) > ε} ⋅ ∥f⋆(xt) − ft(xt)∥

≤
T

∑
t=1

1{Margin(f⋆(xt)) ≤ ε} ⋅ ε

+ 2γ
T

∑
t=1

Zt1{ŷt ≠ y⋆(xt),Gap(f⋆(xt), ŷt) > ε} ⋅ ∥f⋆(xt) − ft(xt)∥

+ 2γ
T

∑
t=1

Z̄t1{ŷt ≠ y⋆(xt)} ⋅ ∥f⋆(xt) − ft(xt)∥

= Tε ⋅ ε + 2γ ⋅ TA + 2γ ⋅ TB ⋅ ∥f⋆(xt) − ft(xt)∥,

where the second inequality holds because Gap(f⋆(xt), ŷt) ≤ ε implies that Margin(f⋆(xt)) ≤ ε whenever ŷt ≠ y⋆(xt).
In the last line we plugged in the definition of Tε, and defined TA and TB as the second term and the last term respectively.
We bound term separately below:

● Bound on TA: Note that whenever Zt = 1, we choose ŷt = argmaxk ϕ(ft(xt))[k]. Thus,

TA =
T

∑
t=1

Zt1{ŷt ≠ y⋆(xt),Gap(f⋆(xt), ŷt) > ε} ⋅ ∥f⋆(xt) − ft(xt)∥

≤
T

∑
t=1

Zt1{∥f⋆(xt) − ft(xt)∥ > ε/2γ} ⋅ ∥f⋆(xt) − ft(xt)∥

where the second line follows from Lemma 12 and because ŷt ≠ y⋆(xt). Using the fact that 1{a ≥ b} ≤ a/b for all
a, b ≥ 0, we get that

TA ≤ 4γ
T

∑
t=1

Zt
∥f⋆(xt) − ft(xt)∥2

ε
. (37)

● Bound on TB: Fix any t ≤ T , and let e be such that τe ≤ t < τe+1. Next, note that from Lemma 14, we have

∥f⋆(xt) − gt(xt)∥ ≤∆e(xt). (38)

Plugging in the definition of Zt, we note that

TB =
T

∑
t=1

1{Margin(gt(xt)) > 2γ∆e(xt), ŷt ≠ y⋆(xt)}

≤
T

∑
t=1

1{∥gt(xt) − f⋆(xt)∥ >∆e(xt),Margin(f⋆(xt)) > ε},

where the second inequality is due Lemma 12 and by noting that ŷt ≠ y⋆(xt) and that when Zt = 0, we choose
ŷt = argmaxk ϕ(gt(xt))[k]. However, note that the term inside the indicator contradicts (38) (which always holds).
Thus,

TB = 0. (39)

Combining the bounds (37) and (39), we get that:

RegT ≤ εTε + 8γ2
T

∑
t=1

Zt
∥ft(xt) − f⋆(xt)∥2

ε
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≤ εTε +
8γ2

ε
Ψ

ℓϕ
δ (F , T ),

where the last inequality is due to Lemma 14.

Since ε is a free parameter above, the final bound follows by choosing the best parameter ε, and by plugging in the form of
Ψ

ℓϕ
δ (F , T ).

C.4.3. TOTAL NUMBER OF QUERIES

Let NT denote the total number of expert queries made by the learner within T rounds of interactions. For the ease of
notation, define ∆t(xt) =∆e(t)(xt) where e(t) denotes the epoch number for which τe(t) ≤ t < τe(t)+1. Thus,

NT =
T

∑
t=1

Zt

=
T

∑
t=1

1{Margin(gt(xt)) ≤ 2γ∆t(xt)}

=
T

∑
t=1

1{Margin(gt(xt)) ≤ 2γ∆t(xt),Margin(f⋆(xt)) ≤ ε}

+
T

∑
t=1

1{Margin(gt(xt)) ≤ 2γ∆t(xt),Margin(f⋆(xt)) > ε}

≤
T

∑
t=1

1{Margin(f⋆(xt)) ≤ ε}

+
T

∑
t=1

1{Margin(gt(xt)) ≤ 2γ∆t(xt),Margin(f⋆(xt)) > ε,∆t(xt) ≤ ε/4γ}

+
T

∑
t=1

1{Margin(gt(xt)) ≤ 2γ∆t(xt),Margin(f⋆(xt)) > ε,∆t(xt) > ε/4γ}

= Tε + TD + TE ,

where in the last line we used the definition of Tε and defined TD and TE respectively, which we bound separately below.

● Bound on the term TD. From Lemma 14 recall that ∥f⋆(xt) − gt(xt)∥ ≤ ∆e(xt). Thus, for any xt for which
∥gt(xt)∥ ≤∆e(xt), Lemma 13 implies that

Margin(f⋆(xt)) ≤ 2γ∥ft(xt) − f⋆(xt)∥ + Margin(gt(xt)) ≤ 2γ∆t(xt) + Margin(ft(xt)).

The above implies that

TD =
T

∑
t=1

1{Margin(gt(xt)) ≤ 2γ∆t(xt),Margin(f⋆(xt)) > ε,∆t(xt) ≤ ε/4γ}

≤
T

∑
t=1

1{Margin(f⋆(xt)) ≤ 4γ∆t(xt),Margin(f⋆(xt)) > ε,∆t(xt) ≤ ε/4γ}

≤ 0,

where the last line follows from the fact that all the conditions inside the indictor can not hold simultaneously for any
ε > 0.

● Bound on the term TE . We note that

TE =
T

∑
t=1

1{Margin(gt(xt)) ≤ 2γ∆t(xt),Margin(f⋆(xt)) > ε,∆t(xt) > ε/4γ}

≤
T

∑
t=1

Zt1{∆t(xt) ≥ ε/4γ}
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≤
T

∑
t=1

Zt1{∆e(t)(xt) ≥ ε/4γ}.

Using Lemma 16 with ζ = ε/4γ to bound the term on the right hand side above, we get that with probability at least
1 − 2δ,

TE ≤ O
⎛
⎝
log(T )γ2 ⋅

Ψ̂
ℓϕ
δ (F ;T )

ε2
⋅ θval
⎛
⎝
F , ε

8γ
,
Ψ̂

ℓϕ
δ (F ;T )

T
; f⋆
⎞
⎠
+ log(2/δ)

⎞
⎠
.

Gathering the bounds above, we get that

NT ≤ Tε +O
⎛
⎝
log(T )γ2 ⋅

Ψ̂
ℓϕ
δ (F ;T )

ε2
⋅ θval
⎛
⎝
F , ε

8γ
,
Ψ̂

ℓϕ
δ (F ;T )

T
; f⋆
⎞
⎠
+ log(2/δ)

⎞
⎠
.

Since ε is a free parameter above, the final bound follows by choosing the best parameter ε, and by plugging in the form of
Ψ̂

ℓϕ
δ (F ;T ).

C.5. Proof of Corollary 1

Note that the Tsybakov noise condition implies that there exists constants c, ρ ≥ 0 such that:

Prx∼µ(Margin(f⋆(xt)) ≤ ε) ≤ cερ.

Thus, using Lemma 4, we get that

Tε =
T

∑
t=1

1{Margin(f⋆(xt)) ≤ ε}

≤ 3T

2
Prx∼µ(Margin(f⋆(x)) ≤ ε) + 4 log(2/δ)

≤ 2cTερ + 4 log(2/δ).

Using the above in the bound for Theorem 2, we get that for any ε > 0,

RegT ≲ cTερ+1 +
γ2

λε
Regℓϕ(F ;T ) + log(1/δ),

Setting ε = ( γ2

λCT
Regℓϕ(F ;T ))

1
ρ+2

in the above implies that

RegT ≲ (
γ2

λ
c

1
ρ+1 )

ρ+1
ρ+2
(Regℓϕ(F ;T ))

ρ+1
ρ+2 ⋅ (T ) 1

ρ+2 + log(1/δ).

Similarly, we can bound the query complexity bound for any ε > 0 as:

NT ≲ Tερ +
γ2

λε2
⋅Regℓϕ(F ;T ) ⋅ θval(F , ε/8γ,Regℓϕ(F ;T )/T ; f⋆) + log(1/δ).

Setting ε = ( γ2

λT
⋅Regℓϕ(F ;T ) ⋅ θval(F , ε/8γ,Regℓϕ(F ;T )/T ; f⋆))

1
ρ+2

in the above implies that

NT ≤ (
γ2

λ
⋅Regℓϕ(F ;T ) ⋅ θval(F , ε/8γ,Regℓϕ(F ;T )/T ; f⋆))

ρ
ρ+2
⋅ T 2

ρ+2 .
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C.6. Proofs for Section 3.2

We prove below the lower bound in Theorem 3. The proof is on exactly the same lines as the lower bound in Theorem 28 of
(Foster et al., 2020) with two main changes, first that we make classification instance and two the second scale β we need in
the star number for our ]q

Proof of Theorem 3. Given a the function class F ,assume that m = svalf⋆ (F , ζ, βT ) > 0 (when its 0 the result is obvious).
Let target function f⋆, x1, . . . , xm and f1, . . . , fm be the witness for star number. First, for any i ∈ [m], we have that
∣f⋆(xi)∣ > ζ by definition of the star number. Next note that, for each fi, we have that, for any j ≠ i,

∣fi(xj)∣ ≥ ∣f⋆(xj)∣ − ∣fi(xj) − f⋆(xj)∣ ≥ ζ − βT ≥ ζ/2

On the other hand, from our definition of star number we have that,

∣fi(xi)∣ ≥ ζ/2

Hence we are guaranteed that each fi has a margin of at least ζ/2 on x1, . . . , xm. Now consider the distribution µ over the
context to be the uniform distribution over {x1, . . . , xm}. Also let P i(y = 1∣x) = 1+fi(x)

2
be the conditional probability of

label given context x. Let Di denote the joint distribution over X × {±1} given by drawing x’s from µ and labels from P i.
Let D0 be given by drawing x’s from µ and y conditioned on x as P (y = 1∣x) = 1+f⋆(x)

2
. Now let ν = 0 with probability

1/2 and with probability 1/2, ν is drawn uniformly from [m]. Note that by our premise,

1

2
ED0 [RegT ] +

1

2

1

m

m

∑
i=1

EDi [RegT ] = Eν [EDν [RegT ]] ≤ c
ζT

m

EDi [RegT ] ≥ EDi [
T

∑
t=1

ζ

2
Ex∼µEŷ∼pt(x) [1{fi(x)ŷ < 0}]]

= Tζ

2
EDi [

1

T

T

∑
t=1

Ex∼µPŷ∼pt(x)(sign(fi(x)) ≠ ŷ)]

≥ Tζ

4
EDi ∥

1

T

T

∑
t=1

pt − sign(fi)∥
L1(µ)

Using this we get that

1

m

m

∑
i=1

EDi ∥
1

T

T

∑
t=1

pt − sign(fi)∥
L1(µ)

≤ 8c

m

Hence using c = 64 and using Markov’s inequality we have that

1

m

m

∑
i=1

PDi

⎛
⎝
∥ 1
T

T

∑
t=1

pt − sign(fi)∥
L1(µ)

> 2

m

⎞
⎠
≤ 1

16

Further note that ∥sign(fj) − sign(fi)∥L1(µ) >
4
m

and hence we can identify ν conditioned on it not being 0 with probability
at least 1 − 1/16. Hence using Fano with reference measure D0 we get,

log(2) ≤ 1

m

m

∑
i=1

DKL(D0∣Di)

Now we are left with bounding DKL(D0∣Di). To this, end we first make a simple observation that the distribution on the
xt’s is the same under D0 and Di. Hence on rounds t where Zt = 0 since we dont query for labels, these rounds we dont
glean any new information to distinguish Di from D0. In other words, we only need to consider rounds when Zt = 1. Hence
we have:

DKL(D0∣Di) = ED0 [
T

∑
t=1

ZtDKL(P0(yt = 1∣xt)∣Pi(yt = 1∣xt))]

35



Selective Sampling and Imitation Learning via Online Regression

Assuming ζ > 1/4 and using the bound on KL between Bernoulli variables we get,

DKL(D0∣Di) ≤ ED0 [32Niζ
2 + 8(max

j≠i
Nj)β2]

where Ni = ∣{t ∶ Zt = 1, xt = xi} and we used item 3 in the definition of star number for the ζ2 term and item 1 for the β2

term. Hence we have that,

log(2) ≤ 1

m

m

∑
i=1

ED0 [32Niζ
2 + 8(max

j≠i
Nj)β2]

≤ 32

m
ED0 [

m

∑
i=1

Ni] ζ2 + 8ED0 [max
j

Nj]β2

≤ 32

m
ED0 [NT ] ζ2 + 8ED0 [NT ]β2

Since β2 ≤ ζ2/m, we have that

log(2) ≤ 40

m
ED0 [NT ] ζ2

Hence we conclude that,

ED0 [NT ] ≥
log(2)m
40ζ2

which yields the lemma.

Proof of Corollary 2. UseF = {f0, f1, . . . , f√T where f0(xi) = 1/2+ζ for every x1, . . . , x√T . Further, let fi(xi) = 1/2−ζ
and fi(xj) = 1/2 + ζ for any j ≠ i. Note that with f⋆ = f0 and f1, . . . , fm on x1, . . . , x√T shows that star number for this
class is

√
T (and so is disagreement coeff.) Thus applying theorem 3 (using the converse) we see that if number of queries

is smaller than
√
T , then regret bound is larger

√
T

D. Imitation Learning
Additional notation. A policy π maps states X to actions A. For any h ≤H , and random variable Z(xh, ah), we use the
notation Eπ[Z(xh, ah)] to denote the expectation w.r.t. trajectories {x1, a1 . . . , xH , aH} sampled using the policy π.

D.1. Imitation Learning Tools

We first recall the performance difference lemma, which is well known in the IL literature.

Lemma 17 (Performance Difference Lemma; Kakade & Langford (2002); Ross & Bagnell (2014)). For any MDP M , and
any two arbitrary stationary policies π and π̃, we have

V π − V π̃ =
H

∑
h=1

Exh,ah∼dπ̃
h
[−Aπ

h(xh, ah)],

where Aπ is the advantage function of the policy π in MDP M , i.e., Aπ
h(x, a) = Qπ

h(x, a) − V π
h (x).

D.2. Proof of Proposition 1

MDP construction. The underlying MDP is a binary tree of depth H . In particular, we construct the deterministic
MDP M = (X ,A, P, r, x1) where state space X = ∪Hh=1Xh with Xh = {xh,i}2

h−1
i=1 (we assume that x1 = x1,1), action space

A = {0,1}, reward r is such that r(x, a) = Bern( 1
2
+ 1

4
1{x = x⋆}) for some special state x⋆ ∈ XH . The transition dynamics

P is deterministic and defines a binary tree over X , i.e. for any h and xh,i, P (x′ ∣ xh,i, a) = 1 if x′ = xh+1,2i−1 and a = 0, or
x′ = xh+1,2i+1 and a = 1, else P (x′ ∣ x, a) = 0.
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We next define the expert policy π⋆, expert model f⋆ and the class F . First, for any path τ = (x1, a1, . . . , xH , aH) from the
root state x1 to a terminal state xH at the layer H , define the policy πτ as

πτ(xh) =
⎧⎪⎪⎨⎪⎪⎩

ah if (xh, ah) ∈ τ
āh ← Uniform({0,1}) otherwise

.

In particular, πτ is defined such that for any state on the path τ , we choose the corresponding action in τ , and for any state
outside of τ , we choose an arbitrary (deterministic) action. Let T denote the set of all 2H many paths from the root note
x1 to a leaf node xH ∈ XH . We define the class Π = {πτ ∣ τ ∈ T }, and F = {fτ ∣ τ ∈ T }, where for any τ , we define
fτ ∶ X ↦ R2 as

fτ(x) =
⎧⎪⎪⎨⎪⎪⎩

(3/4, 1/4) if πτ(x) = 0
(1/4, 3/4) if πτ(x) = 1

.

Next, let τ⋆ = (x1, a
′
1, x

′
2, . . . , x

′
H−1, a

′
H−1, x

⋆) be the path from the root x1 to the special state x⋆ ∈ XH on the underlying
binary tree. We finally define π⋆ = πτ⋆ and f⋆ = fτ⋆ .

Lower bound. Given the MDP construction, the class F , f⋆ and π⋆ above, we now proceed to the desired lower
bound for non-interactive imitation learning. First, note that π⋆(x) = argmaxa(f⋆(x)[a]) for any x ∈ X . Furthermore,
Margin(f⋆((x)) = 1

2
∣f(x)[0] − f(x)[1]∣ = 1

4
for all x ∈ X . Thus, for any ε ≤ 1

4
, Tε,h = 0.

Next, for any policy π, note that V π = 1
2
+ 1

4
1{π = π⋆}. Thus, π⋆ is the unique 1/8-suboptimal policy. Additionally,

consider a noisy expert that draws its label according to (2) with the link function ϕ(z) = z, i.e. on the state x, the expert
draws its label from a ∼ f⋆(x). Now, suppose that the learner is given a dataset D of m many trajectories drawn this noisy
expert. There are two scenarios: either D does not contain τ∗, or D contains the trajectory τ∗.

● In the first case, the learner is restricted to finding π⋆ by eliminating all other π ≠ π⋆ using the observations D. Since,
∣Π∣ = 2H and each policy in the class is associated with a different path on the tree, we must have that m = O(2H).

● In the second case, we need τ⋆ ∈ D. However, note that probability of observing the trajectory τ⋆ when following the
actions proposed by the noisy expert is Pr(τ⋆ ∣ ah ∼ f⋆(xh)) = (3/4)H . Thus, in order to observe τ⋆ with probability
at least 3/4 in the dataset D, we need m = O((4/3)H).

In both the scenarios above, we need to collect exponentially many samples.

D.3. Proof of Theorem 4

Before delving into the proof, we recall the relevant notation. In Algorithm 2, for any h ≤H ,

● The label yt,h ∼ ϕ(f⋆(xt,h)), , where ϕ denotes the link-function given in (2).

● The function SelectAction(ft,h(xt,h)) = argmaxk ϕ(ft,h(xt,h))[k].

● For any vector v ∈ RK , the margin is given by the gap between the value at the largest and the second largest coordinate
(under the link function ϕ), i.e.

Margin(v) = ϕ(v)[k⋆] −max
k≠k⋆

ϕ(v)[k],

where k⋆ ∈ argmaxk∈[K] ϕ(v)[k].

● We define Tε = ∑T
t=1∑H

h=1 1{Margin(f⋆h(xt,h)) ≤ ε} to denote the number of samples within T rounds of interaction
for which the margin w.r.t. f⋆h is smaller than ε.

● The trajectory at round t is generated using the dynamics {Tt,h}h≤H to determine the states that the learner observes,
starting from the state x1.
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● At round t, the learner collects data using the policy πt such that at time h, and state x, the action πt(x) =
SelectAction(ft,h(xt,h)).

● For any policy π, let τπt denote the (counterfactual) trajectory that one would obtain by running π on the deterministic
dynamics {Tt,h}h≤H with the start state xt,1, i.e.

τπt = {xπ
t,1, π(xπ

t,1), . . . , xπ
t,H , π(xπ

t,H)} (40)

where xπ
t,1 = xt,1 and xπ

t,h+1 = Tt,h(xπ
t,h, π(xπ

t,h)).

● For a trajectory τ = {x1, a1, . . . , xH , aH}, we define the total return

R(τ) =
H

∑
h=1

r(xh, ah). (41)

● Additionally, for any policy π and dynamics {Th}h≤H , we define the trajectory obtained by running the policy π as

τπ = {xπ
1 , π1(xπ

1 ), xπ
2 , . . .}.

● We define the function Gap ∶ RK × [K]↦ R+ as

Gap(v, k) =max
k′

ϕ(v)[k′] − ϕ(v)[k], (42)

to denote the gap between the largest and the k-th coordinate of v, and note that Margin(v) ≤ Gap(v, k) for all k ≠ k⋆
(due to Lemma 9).

D.3.1. SUPPORTING TECHNICAL RESULTS

We first define a useful technical lemma which allows us to bound the gap between the total returns for policies π1 and π2,
under the dynamics {Th}h≤H . Recall that for a policy π, we define the trajectory τπ under {Th}h≤H and the start state x1

as the trajectory {xπ
1 , π(xπ

1 ), . . . , xπ
H , π(xπ

H)} where xπ
1 = x1, and xπ

h+1 ← Th(xπ
h, π(xπ

h)).
Lemma 18. Let {Th}h≤H be a deterministic dynamics, and let x1 be the start state. Let π1 and π2 be any two deterministic
policies, and let τπ1 = {xπ1

1 , π1(xπ1

1 ), x
π1

2 , . . .} and τπ2 = {xπ2

1 , π1(xπ2

1 ), x
π2

2 , . . .} be two trajectories drawn using π1 and
π2 on {Th}h≤H with start state x1. Then, for any set X ⊆ X , the total trajectory rewards satisfy

R(τπ1) −R(τπ2) ≤ 2H
H

∑
h=1

1{xπ1

h ∈ X} + 2H
H

∑
h=1

1{π2(xπ2

h ) ≠ π1(xπ2

h ), x
π2

h ∉ X}.

Proof. Let h ≤H denote the first timestep at which the policies π1 and π2 choose different actions under {Th}h≤H . Since
the trajectories τπ1 = {xπ1

1 , π1(xπ1

1 ), x
π1

2 , . . .} and τπ2 = {xπ2

1 , π1(xπ2

1 ), x
π2

2 , . . .} are obtained by evolving through (the
deterministic dynamics) {Th}h≤H using policies π1 and π2 respectively, and with the same state state x1, we have that

xπ1

h = x
π2

h for all h ≤ h,

and

π1(xπ1

h ) = π2(xπ2

h ) for all h ≤ h − 1. (43)

Starting from the definition of the cumulative reward R(⋅), we have that

R(τπ1) −R(τπ2) =
H

∑
h=1
(r(xπ1

h , π1(xπ1

h )) − r(x
π2

h , π2(xπ2

h )))

=
h−1
∑
h=1
(r(xπ1

h , π1(xπ1

h )) − r(x
π2

h , π2(xπ2

h ))) +
H

∑
h=h
(r(xπ1

h , π1(xπ1

h )) − r(x
π2

h , π2(xπ2

h )))
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=
H

∑
h=h
(r(xπ1

h , π1(xπ1

h )) − r(x
π2

h , π2(xπ2

h ))),

where the last line uses the fact that the trajectories (and thus the rewards) τπ1 and τπ2 are identical for the first h − 1 states
and actions (see (43)). Since (43) also implies that xπ1

h = x
π2

h , for the ease of notation we define xh = xπ1

h = x
π2

h . Using the
fact that ∣r(x, a)∣ ≤ 1 and that π1(xh) ≠ π2(xh) (by definition of h), we can bound the above as

R(τπ1) −R(τπ2) ≤ 2(H − h + 1)1{π1(xh) ≠ π2(xh)}
≤ 2H1{π1(xh) ≠ π2(xh)}
= 2H1{π1(xh) ≠ π2(xh), xh ∈ X} + 2H1{π1(xh) ≠ π2(xh), xh ∉ X}
≤ 2H1{xh ∈ X} + 2H1{π1(xh) ≠ π2(xh), xh ∉ X}
= 2H1{xπ1

h ∈ X} + 2H1{π2(xπ2

h ) ≠ π1(xπ2

h ), x
π2

h ∉ X}

≤ 2H
H

∑
h=1

1{xπ1

h ∈ X} + 2H
H

∑
h=1

1{π2(xπ2

h ) ≠ π1(xπ2

h ), x
π2

h ∉ X},

where the equality in second last line plugs in the fact that xh = xπ1

h = x
π2

h , and the last inequality is a straightforward upper
bound.

We will also be using Lemma 9 and Lemma 13 from Appendix C.3 for bounding the Margin in the regret bound proofs.
Finally, we note the following properties of the function f⋆h .

Lemma 19. With probability at least 1 − δ, the function f⋆h satisfies for any h ≤H and t ≤ T ,

(a) ∑t−1
s=1Zs,h∥f⋆h(xs,h) − fs,h(xs,h)∥2 ≤ Ψℓϕ

δ (Fh, T ),

(b) ∥f⋆h(xt,h) − ft,h(xt,h)∥ ≤∆t,h(xt,h),

where Ψ
ℓϕ
δ (Fh, T ) = 4

λ
Regℓϕ(Fh;T ) + 112

λ2 log(4H log2(T )/δ).

Proof. (a) We first note that we do not query oracle when Zs,h = 0, and thus we can ignore the time steps for which
Zs,h = 0. Hence, for each h ∈ [H], applying Lemma 5 along with the fact that supx,f∈Fh

∣f(x)∣ ≤ 1 yields

t−1
∑
s=1

Zs,h∥f⋆h(xs,h) − fs,h(xs,h)∥2 ≤
4

λ
Regℓϕ(Fh;T ) +

112

λ2
log(4 log2(T )/δ)

for all t ≤ T . Then, we take the union bound for all h ∈ [H], which completes the proof.

(b) The second part follows from using the observation in part-(a) that f⋆h satisfies the constraint in the definition of ∆t,h

given in (6), and thus ∥f⋆h(xt,h) − ft,h(xt,h)∥ ≤∆t,h(xt,h).

The next technical lemma bounds the number of times when ∆t,h(xt,h) ≥ ζ and we query the expert. Note that Lemma 20
holds even if the sequence {xt,h}t≤T was adversarially generated.

Lemma 20. Let f⋆ satisfy Lemma 19, and let ∆t,h(xt) be defined in (6). Suppose we run Algorithm 2 on data sequence
{{xt,h}h≤H}t≤T , and let Zt,h be as defined in line 4. Then, for any ζ > 0, with probability at least 1 −Hδ, for any h ≤H ,

T

∑
t=1

Zt,h1{∆t,h(xt,h) ≥ ζ} ≤
20Ψ

ℓϕ
δ (Fh, T )
ζ2

⋅E(Fh,
ζ

2
; f⋆h),

where E denotes the eluder dimension is given in Definition 1.

Proof. The proof is identical to the proof of Lemma 11 by replacing all ∣⋅∣ with ∥⋅∥, and substitute the corresponding bounds
for f⋆h via Lemma 19 (instead of using Lemma 10). We skip the proof for conciseness.
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D.3.2. REGRET BOUND

Recall that the trajectory at round t is generated using the dynamics {Tt,h}h≤H . Define the policy πt and π⋆ such that for
any h ≤H and x ∈ Xh,

πt(xh) = SelectAction(ft,h(xh)), and, π⋆(xh) = SelectAction(f⋆h(xh)). (44)

Furthermore, for any policy π, let τπt denote the trajectory that one would obtain by running π on the deterministic dynamics
{Tt,h}h≤H with the start state xt,1, i.e.

τπt = {xπ
t,1, π(xπ

t,1), . . . , xπ
t,H , π(xπ

t,H)} (45)

where xπ
t,1 = xt,1 and xπ

t,h+1 = Tt,h(xπ
t,h, π(xπ

t,h)). Note that Algorithm 2 collects trajectories using the policy πt at round
t. Thus, we have that

xπt

t,h = xt,h, (46)

where xt,h denotes the state at time step h in round t of Algorithm 2. We now have all the notation to proceed to the proof
on our regret bound.

Step 1: Bounding the difference in return at round t. Fix any t ≤ T , and let τπt
t and τπ

⋆
t denote the trajectories that

would have been sampled using the policies πt and the policy π⋆ at round t. Furthermore, define the set Xε as

Xε ∶=
H

⋃
h=1
{x ∈ Xh ∣ Margin(f⋆h(x)) ≤ ε} (47)

Using Lemma 18 for the policies πt and π⋆, and the set Xε defined above, we get that1

R(τπ
⋆

t ) −R(τπt
t ) ≤ 2H

H

∑
h=1

1{xπ⋆
t,h ∈ Xε} + 2H

H

∑
h=1

1{πt(xπt

t,h) ≠ π
⋆(xπt

t,h), x
πt

t,h ∉ Xε} (48)

= 2H
H

∑
h=1

1{xπ⋆
t,h ∈ Xε} + 2H

H

∑
h=1

1{πt(xt,h) ≠ π⋆(xt,h), xt,h ∉ Xε}

= 2H
H

∑
h=1

1{xπ⋆
t,h ∈ Xε} + 2H

H

∑
h=1

Zt,h1{πt(xt,h) ≠ π⋆(xt,h), xt,h ∉ Xε}

+ 2H
H

∑
h=1

Z̄t,h1{πt(xt,h) ≠ π⋆(xt,h), xt,h ∉ Xε}

≤ 2H
H

∑
h=1

1{xπ⋆
t,h ∈ Xε} + 2H

H

∑
h=1

Zt,h1{πt(xt,h) ≠ π⋆(xt,h), xt,h ∉ Xε}

+ 2H
H

∑
h=1

Z̄t,h1{πt(xt,h) ≠ π⋆(xt,h)}

= 2H
H

∑
h=1

1{xπ⋆
t,h ∈ Xε} + 2HTA + 2HTB , (49)

where the second line is obtained by plugging in (46) and the last line simply defines TA and TB to be the second and the
third terms in the previous line without the 2H multiplicative factor.

We bound TA and TB separately below.

● Bound on term TA. Using the definition of Xε from (47), we note that

TA =
H

∑
h=1

Zt,h1{πt(xt,h) ≠ π⋆(xt,h), xt,h ∉ Xε}

1The key advantage of using Lemma 18 is that the first term∑H
h=1 1{xπ⋆

t,h ∈ Xε} accounts for the number steps at which a counterfactual
trajectory sampled using π⋆ goes to the state space with margin less than ε. Thus, we only pay for the number of times when the
comparator policy π⋆ would go to states with ε-margin (instead of when πt does to such states).
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=
H

∑
h=1

Zt,h1{πt(xt,h) ≠ π⋆(xt,h),Margin(f⋆h(xt,h)) > ε}

≤
H

∑
h=1

Zt,h1{π⋆(xt,h) ≠ πt(xt,h), ϕ(f⋆h(xt,h))[π⋆(xt,h)] − ϕ(f⋆h(xt,h))[πt(xt,h)] ≥ ε}

≤
H

∑
h=1

Zt,h1{ϕ(f⋆h(xt,h))[π⋆(xt,h)] − ϕ(f⋆h(xt,h))[πt(xt,h)] ≥ ε},

where in the second last line we used the definition of Margin(f⋆h(xt,h)) along with the fact that π⋆(xt,h) ≠ πt(xt,h).
Using the relation in Lemma 12 for the term inside the indicator, we can further bound the above as

TA ≤
H

∑
h=1

Zt,h1{2γ∥f⋆h(xt,h) − ft,h(xt,h)∥ ≥ ε}

≤ 4γ2

ε2

H

∑
h=1

Zt,h∥f⋆h(xt,h) − ft,h(xt,h)∥2,

where in the second inequality we used: 1{a ≥ b} ≤ a2/b2 for any a, b ≥ 0.

● Bound on term TB . Before delving into the proof, first note that Lemma 19-(b) implies that

∥f⋆h(xt,h) − ft,h(xt,h)∥ ≤∆t,h(xt,h). (50)

Next, note that

TB =
H

∑
h=1

Z̄t,h1{πt(xt,h) ≠ π⋆(xt,h)}

=
H

∑
h=1

1{Margin(ft,h(xt,h)) > 2γ∆t,h(xt,h), πt(xt,h) ≠ π⋆(xt,h)},

where in the last line we just plugged in the query condition under which Zt,h = 0. However note that the above two
conditions inside the indicator imply that

2γ∆t,h(xt,h) < Margin(ft,h(xt,h))
≤ ϕ(ft,h(xt,h))[πt(xt,h)] − ϕ(ft,h(xt,h))[π⋆(xt,h)]
≤ 2γ∥ft,h(xt,h) − f⋆h(xt,h)∥,

where the second line uses the definition of Margin(⋅) and the fact that πt(xt,h) ≠ π⋆(xt,h), the last line is due to
Lemma 12 . Thus,

TB ≤
H

∑
h=1

1{∥ft,h(xt,h) − f⋆h(xt,h)∥ >∆t,h(xt,h)},

but the conditions inside the indicator in the above contradicts (50) (which holds with probability 1 − δ). Thus, with
probability at least 1 − δ,

TB = 0. (51)

Plugging in the bounds on TA and TB in (49), we get that with probability at least 1 − δ,

R(τπ
⋆

t ) −R(τπt
t ) ≤ 2H

H

∑
h=1

1{xπ⋆
t,h ∈ Xε} +

8Hγ2

ε2

H

∑
h=1

Zt,h∥f⋆h(xt,h) − ft,h(xt,h)∥2. (52)

Step 2: Bound on total regret. Using the bound in (52) for each round t, we get that

RegT =
T

∑
t=1
(R(τπ

⋆
t ) −R(τπt

t ))
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≤ 2H
H

∑
h=1

T

∑
t=1

1{xπ⋆
t,h ∈ Xε} +

8Hγ2

ε2

H

∑
h=1

T

∑
t=1

Zt,h∥f⋆h(xt,h) − ft,h(xt,h)∥2

≤ 2H
H

∑
h=1

Tε,h +
8Hγ2

ε2

H

∑
h=1

Ψ
ℓϕ
δ (Fh, T ), (53)

where the last line we use the definition of Tε,h, and plug in the bound in Lemma 19. Using the form of Ψℓϕ
δ (Fh, T ) and

ignoring log factors and constants, we get

RegT = Õ(2H
H

∑
h=1

Tε,h +
8Hγ2

λε2

H

∑
h=1

Regℓϕ(Fh;T ) + log(1/δ)).

Notice that ε is a free parameter above so the final bound follows by taking inf over all feasible ε.

D.3.3. TOTAL NUMBER OF QUERIES

Let NT denote the total number of expert queries made by the learner within T rounds of interaction (with H steps per
round). For t ≤ T , let ht denote the first timestep at which Zt,ht = 1 at round t. Thus, we have that

NT =
T

∑
t=1

H

∑
h=1

Zt,h (54)

≤H
T

∑
t=1

Zt,ht

=H
T

∑
t=1

Zt,ht1{xt,ht ∈ Xε} +H
T

∑
t=1

Zt,ht1{xt,ht ∉ Xε}

≤H
T

∑
t=1

Zt,ht1{xt,ht ∈ Xε} +H
T

∑
t=1

H

∑
h=1

Zt,h1{xt,h ∉ Xε}

=H
T

∑
t=1

Zt,ht1{xt,ht ∈ Xε} +H
T

∑
t=1

H

∑
h=1

Zt,h1{xt,h ∉ Xε,∆t,h(xt,h) ≤
ε

4γ
}

+H
T

∑
t=1

H

∑
h=1

Zt,h1{xt,h ∉ Xε,∆t,h(xt,h) >
ε

4γ
}

= TC +HTD +HTE ,

where TC , TD and TE are the first, second and the third term respectively in the previous line. We bound them separately
below:

● Bound on TC . Fix any t ≤ T , and note that

(TC)t =HZt,ht1{xt,ht ∈ Xε}
=HZt,ht1{xt,ht ∈ Xε}1{∀h < ht ∶ π⋆(xt,h) = πt(xt,h)}

+HZt,ht1{xt,ht ∈ Xε}1{∃h < ht ∶ π⋆(xt,h) ≠ πt(xt,h)}. (55)

For the second term, note that

Zt,ht1{xt,ht ∈ Xε}1{∃h < ht ∶ π⋆(xt,h) ≠ πt(xt,h)} ≤
ht

∑
h=1

Zt,ht1{π⋆(xt,h) ≠ πt(xt,h)}

≤
ht

∑
h=1

Zt,htZ̄t,h1{π⋆(xt,h) ≠ πt(xt,h)}

≤
ht

∑
h=1

Z̄t,h1{π⋆(xt,h) ≠ πt(xt,h)}
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where in second inequality above, we used the fact that Zt,h = 0 (and thus Z̄t,h = 1) for all h ≤ ht, by the definition of
ht. However note that the right hand side in the last inequality is equivalent to the term TB defined above (where sum
is now till ht instead of H). Thus, using the bound in (51) in the above, we immediately get that

Zt,ht1{xt,ht ∈ Xε}1{∃h < ht ∶ π⋆(xt,h) ≠ πt(xt,h)} = 0.

For the first term in (55), using the condition that π⋆(xt,h) = πt(xt,h) for all h ≤ ht, we get that xt,h = xπ⋆
t,h and thus

HZt,ht1{xt,ht ∈ Xε}1{∀h ≤ ht ∶ π⋆(xt,h) = πt(xt,h)} ≤HZt,ht1{xπ⋆
t,ht
∈ Xε}

≤H1{xπ⋆
t,ht
∈ Xε}

≤H
H

∑
h=1

1{xπ⋆
t,h ∈ Xε}.

Gathering the two terms above, and plugging in the definition of Tε,h, we get that

TC ≤H
H

∑
h=1

T

∑
t=1

1{xπ⋆
t,h ∈ Xε} =H

H

∑
h=1

Tε,h.

● Bound on TD. Using the definition of the set Xε and Zt,h, we note that

(TD)t =
H

∑
h=1

Zt,h1{xt,h ∉ Xε,∆t,h(xt,h) ≤
ε

4γ
}

=
H

∑
h=1

1{Margin(ft,h(xt,h)) ≤ 2γ∆t,h(xt,h),Margin(f⋆h(xt,h)) > ε,∆t,h(xt,h) ≤
ε

4γ
} (56)

Recall that Lemma 19 implies that with probability at least 1 − δ,

∥f⋆h(xt,h) − ft,h(xt,h)∥ ≤∆t,h(xt,h),

using which with Lemma 13 implies that

Margin(f⋆h(xt,h)) ≤ Margin(ft,h(xt,h)) + 2γ∥f⋆h(xt,h) − ft,h(xt,h)∥
≤ Margin(ft,h(xt,h)) + 2γ∆t,h(xt,h).

Using the above bound with the conditions in (56) implies that

(TD)t =
H

∑
h=1

1{Margin(f⋆h(xt,h)) ≤ 4γ∆t,h(xt,h),Margin(f⋆h(xt,h)) > ε,∆t,h(xt,h) ≤
ε

4γ
}

=
H

∑
h=1

1{Margin(f⋆h(xt,h)) ≤ ε,Margin(f⋆h(xt,h)) > ε}

= 0,

where the last equality holds because the two conditions in the indicator in the previous line can never occur simultane-
ously.

● Bound on TE .

TE =
T

∑
t=1

H

∑
h=1

Zt,h1{xt,h ∉ Xε,∆t,h(xt,h) >
ε

4γ
}

≤
H

∑
h=1

T

∑
t=1

Zt,h1{∆t,h(xt,h) >
ε

4γ
}.

An application of Lemma 20 in the above for each h ≤H implies that

TE ≤
H

∑
h=1

320γ2Ψ
ℓϕ
δ (Fh, T )
ε2

⋅E(Fh,
ε

8γ
; f⋆h).
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Gathering the bound above, we get that

NT ≤H
H

∑
h=1

Tε,h +
320Hγ2

ε2

H

∑
h=1

Ψ
ℓϕ
δ (Fh, T ) ⋅E(Fh,

ε

8γ
; f⋆h).

Plugging in the form of Ψℓϕ
δ (Fh, T ) and ignoring log factors and constants, we get that

NT ≤ Õ(H
H

∑
h=1

Tε,h +
320Hγ2

λε2

H

∑
h=1

Regℓϕ(Fh;T ) ⋅E(Fh, ε/8γ; f⋆h) + log(1/δ)).

Notice that ε is a free parameter above so the final bound follows by taking inf over all feasible ε. s

D.4. Proof for the Stochastic Setting

Algorithm 2 considers arbitrary deterministic dynamics {{Tt,h}h≤H}t≤T . When the underlying dynamics T̃ is stochastic,
we can simply simulate Algorithm 2, where we set {Tt,h}h≤H = T̃ (⋅;ωt) where ωt is drawn i.i.d. for every t ≤ T . In the
following, we provide regret and query complexity bounds for stochastic dynamics.

Regret bound. Note that Theorem 4 bounds the difference of cumulative rewards of trajectories drawn using the policies
πt and π⋆ on the adversarially chosen deterministic dynamics {Tt,h}Hh=1 respectively. In particular, we bound

RegT =
T

∑
t=1
(R(τπ

⋆
t ) −R(τπt

t )).

On the other hand, when the dynamics is stochastic, we aim to bound the gap between the expected values V π⋆ − V πt

obtained under the stochastic dynamics T̃ . We obtain this bound by pushing all the stochasticity into the choice of random
seed ω. Fix any t ≤ T , and consider the deterministic dynamics (Tt,1, . . . ,Tt,H) obtained by setting the random seed to be
ωt in the stochastic dynamics T̃ , i.e. (Tt,1, . . . ,Tt,H) ∶= T̃ ( ; ωt). Thus, for any policy π

V π = Eωt
[R(τπt ) ∣ (Tt,1, . . . ,Tt,H) = T̃ ( ; ωt)].

In the following, we will bound the difference in the value function V π − V πt , by appealing to the regret bound in the proof
of Theorem 4 using appropriate concentration inequalities. First, recall that in Algorithm 2, the dynamics {Tt,h}h≤H is
chosen before the round t, and that the policy πt only depends on the interaction till round t − 1. Thus,

T

∑
t=1

V π − V πt =
T

∑
t=1

Eωt[R(τπt ) −R(τπ
⋆

t )]

≤
T

∑
t=1

Eωt[2H
H

∑
h=1

1{xπ⋆
t,h ∈ Xε} + 2H

H

∑
h=1

1{πt(xπt

t,h) ≠ π
⋆(xπt

t,h), x
πt

t,h ∉ Xε}],

where the last holds due to Lemma 18 and the set Xε is defined in (47). An application of Lemma 4 in the above implies that
with probability at least 1 − δ,

T

∑
t=1

V π − V πt ≤ 4H
T

∑
t=1

H

∑
h=1

1{xπ⋆
t,h ∈ Xε} + 4H

T

∑
t=1

H

∑
h=1

1{πt(xπt

t,h) ≠ π
⋆(xπt

t,h), x
πt

t,h ∉ Xε} + 32H
2 log(2/δ).

The rest of the proof is identical to the proof of Theorem 4 from (48) onwards. They query complexity can be similarly
computed.
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D.5. Proof of Theorem 5

Algorithm 4 Imitation learning with M experts, A = {1,2, . . . ,K}
Require: Parameters δ, γ, λ, T , function class {Fm

h }h≤H,m≤M , online oracle {Oraclemh }h≤H,m≤M w.r.t. ℓϕ.
1: Set Ψℓϕ

δ (Fm
h , T ) = 4

λ
Regℓϕ(Fm

h ;T ) + 112
λ2 log(4MH log2(T )/δ).

2: Compute fm
1,h = Oracle1,h(∅) for each h ∈ [H] and m ∈ [M].

3: for t = 1 to T do
4: Nature chooses the state xt,1.
5: for h = 1 to H do
6: Define Fm

t,h(x) ∶= [f1
t,h(x), . . . , fM

t,h(x)].
7: Learner plays ŷt,h = SelectAction(Ft,h(xt,h)).
8: Learner transitions to the next state in this round xt,h+1 ← Tt,h(xt,h, ŷt,h).
9: For each m ∈ [M], learner computes

∆m
t,h(xt,h) ∶= max

f∈Fm
h

∥f(xt,h) − fm
t,h(xt,h)∥

s.t.
t−1
∑
s=1

Zs,h∥f(xs,h) − fm
s,h(xs,h)∥

2 ≤ Ψℓϕ
δ (F

m
h , T ). (57)

and defines ∆⃗t,h(xt,h) = [∆1
t,h(xt,h), . . . ,∆M

t,h(xt,h)].
10: Learner decides whether to query: Zt,h = MarginQuery(Ft,h(xt,h), ∆⃗t,h(xt,h))
11: if Zt,h = 1 then
12: for m = 1 to M do
13: Learner queries expert m for its label ymt,h for xt,h.
14: fm

t+1,h ← Oraclemt+1,h({xt,h, yt,h})
15: end for
16: else
17: fm

t+1,h ← fm
t,h for each m ∈ [M].

18: end if
19: end for
20: end for

Before delving into the proof, we recall the relevant notation. In Algorithm 4, for any round t ≤ T and h ≤H:

● The aggregation function A ∶ RK×M ↦ RK maps the predictions of twhhe estimated experts to distributions over
actions.

● The function SelectAction() chooses the action to play at round t, and is defined as:

SelectAction(Ft,h(xt,h)) = argmax
k

A (ϕ(Ft,h(xt,h)))[k], (58)

where Ft,h(xt,h)) = [f1
t,h(xt,h)), . . . , fM

t,h(xt,h))], and ϕ denotes the link-function given in (2).

● Our goal in Algorithm 4 is to complete with the policy π⋆(x) = SelectAction(F ⋆(x)).

● On query, the m-th expert generates its action (which it returns in the feedback) from the distribution

Pr(ymt,h = k) = ϕ(f⋆,mh (xt,h))[k].

● For the ease of notation, we define the operator Q such that

Q(U ; ε⃗) ∶= sup
V

1{SelectAction(U) ≠ SelectAction(V )}

s.t. ∥U[∶,m] − V [∶,m]∥2 ≤ ε⃗[m] ∀m ≤M. (59)
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● We decide whether to query the labels (from the M experts) using the query function MarginQuery() which is defined
as:

MarginQuery(Ft,h(xt,h), ∆⃗t,h(xt,h)) = Q(Ft,h(xt,h), ∆⃗t,h(xt,h)).

At round t, the learner interactions with transition dynamics {Tt,h}h≤H and collects data. Without loss of generality, we
assume that the learner always starts from the state xt,1. We next recall the notation on the interaction at round t:

● The learner collects data using the policy πt, defined such that

πt(x) = SelectAction(ft,h(xt,h)).

for any h ≤H , and state x ∈ Xh.

● For any policy π, we use the notation τπt to denote the (counterfactual) trajectory that would have been generated by
running π on the deterministic dynamics {Tt,h}h≤H with the start state xt,1, i.e.

τπt = {xπ
t,1, π(xπ

t,1), . . . , xπ
t,H , π(xπ

t,H)}, (60)

where xπ
t,1 = xt,1 and xπ

t,h+1 = Tt,h(xπ
t,h, π(xπ

t,h)).

● For any trajectory τ = {x1, a1, . . . , xH , aH}, we define the total return

R(τ) =
H

∑
h=1

r(xh, ah). (61)

We finally recall the definition of Tε,h:

● Given a matrix-valued function F (x) ∈ RK×M , we define the set B∞(F (x), ∆⃗) to denote the set of all matrices F ′

such that ∥F (x)[∶,m] − F ′(x)[∶,m]∥ ≤ ∆⃗[m] for all m ≤M .

● We say that a point x is within ε-margin w.r.t. F ⋆h if

1{Q(F ⋆h (x), ε1⃗) = 1}.

Informally, the above implies that there exists an F ′(x) ∈ B∞(F ⋆h (x), ε) such that SelectAction(F ′(x)) ≠
SelectAction(F ⋆h (x)).

● We define the set Tε,h = ∑T
t=1 1{Q(F ⋆h (xπ⋆

t,h), ε1⃗) = 1} to denote the number of samples within T rounds of interaction,
and on the corresponding (counterfactual) trajectory of π⋆, that are within ε-margin (as defined above).

D.5.1. SUPPORTING TECHNICAL RESULTS

Lemma 21. With probability at least 1 − δ, for any m ≤M , and t ≤ T and h ≤H , the function f⋆,m satisfies

(a) ∑t−1
s=1Zs,h∥f⋆,mh (xs,h) − fm

s,h(xs,h)∥2 ≤ Ψℓϕ
δ (Fm

h , T ) ,

(b) ∥f⋆,mh (xt,h) − fm
t,h(xt,h)∥ ≤∆m

t,h(xt,h),

where Ψ
ℓϕ
δ (Fm

h , T ) = 4
λ
Regℓϕ(Fm

h ;T ) + 112
λ2 log(4MH log2(T )/δ).

Proof.

(a) We first note that we do not query oracle when Zs,h = 0, and thus we can ignore the time steps for which Zs,h = 0.
Hence, for each h ∈ [H] and m ∈ [M], applying Lemma 5 yields

t−1
∑
s=1

Zs,h∥f⋆,mh (xs,h) − fs,h(xs,h)∥2 ≤
4

λ
Regℓϕ(Fm

h ;T ) + 112

λ2
log(4 log2(T )/δ)

for all t ≤ T . Then, we take the union bound for all h ∈ [H] and m ∈ [M], which completes the proof.
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(b) The second part follows from using part-(a) along with the definition in (57).

The next lemma bound the number of times when ∆m
t,h(xt,h) ≥ ζ, and we query. Note that Lemma 22 holds even if the

sequence {xt,h}t≤T was adversarially generated.

Lemma 22. Let f⋆,m satisfy Lemma 21 , and let ∆m
t,h(xt,h) be defined in Algorithm 4. Suppose Algorithm 4 is run on the

data sequence {xt,h}t≤1, and let Zt,h be defined in line D.5. Then, for any ζ > 0, with probability at least 1 −Mδ, for any
m ∈ [M], and h ≤H ,

T

∑
t=1

Zt,h1{∆m
t,h(xt) ≥ ζ} ≤

20Ψ
ℓϕ
δ (Fm

h , T )
ζ2

⋅E(Fm
h , ζ/2; f⋆,mh ),

where E denotes the eluder dimension given in Definition 1.

Proof. The proof is identical to the proof of Lemma 11 where we handle each m ∈ [M] and h ∈ [H] separately, and
substitute the corresponding bounds for f⋆,mh via Lemma 21 (instead of using Lemma 10). We skip the proof for conciseness.

D.5.2. REGRET BOUND

Suppose the trajectories at round t are generated using the deterministic dynamics {Tt,1, . . . ,Tt,H} = T̃ (⋅ ; ωt) where ωt

denotes the random seed that captures all of the stochasticity at round t. Furthermore, for any policy π, let τπt denote the
trajectory that one would obtain by executing π on {Tt,h}h≤H with the start state xt,1, i.e.

τπt = {xπ
t,1, π(xπ

t,1), . . . , xπ
t,H , π(xπ

t,H)} (62)

where xπ
t,1 = xt,1 and xπ

t,h+1 = Tt,h(xπ
t,h, π(xπ

t,h)). Define the policies π⋆ and πt such that for any h ≤H and x ∈ Xh,

π⋆(x) = SelectAction(F ⋆h (x)), and, πt(x) = SelectAction(Ft,h(x)).

Note that Algorithm 4 collects trajectories using the policy πt at round t. Thus, we have that

xπt

t,h = xt,h, (63)

where xt,h denotes the state at time step h in round t of Algorithm 4. We now proceed to the bound on the regret.

Step 1: Bounding the difference in cumulative return at round t. Fix any t ≤ T , and let τπt
t and τπ

⋆
t denote the

trajectories that would have been sampled using the policies πt and the policy π⋆ at round t. Furthermore, define the set Xε
as

Xε ∶=
H

⋃
h=1
{x ∈ Xh ∣ Q(F ⋆h (x), ε1⃗) = 1} (64)

Using Lemma 18 for the policies πt and π⋆, and the set Xε defined above, we get that

R(τπ
⋆

t ) −R(τπt
t ) ≤ 2H

H

∑
h=1

1{xπ⋆
t,h ∈ Xε} + 2H

H

∑
h=1

1{πt(xπt

t,h) ≠ π
⋆(xπt

t,h), x
πt

t,h ∉ Xε}

= 2H
H

∑
h=1

1{xπ⋆
t,h ∈ Xε} + 2H

H

∑
h=1

1{πt(xt,h) ≠ π⋆(xt,h), xt,h ∉ Xε}

= 2H
H

∑
h=1

1{xπ⋆
t,h ∈ Xε} + 2H

H

∑
h=1

Zt,h1{πt(xt,h) ≠ π⋆(xt,h), xt,h ∉ Xε}

+ 2H
H

∑
h=1

Z̄t,h1{πt(xt,h) ≠ π⋆(xt,h), xt,h ∉ Xε}
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= 2H
H

∑
h=1

1{xπ⋆
t,h ∈ Xε} + 2HTA + 2HTB , (65)

where the second line is obtained by using the relation (63) in the second line. The last line simply defines TA and TB to be
the second and the third term in the previous line, respectively, without the 2H multiplicative factor. We bound these two
terms separately below:

● Bound on TA. Using the definition of Xε from (64), we note that

TA =
H

∑
h=1

Zt,h1{πt(xt,h) ≠ π⋆(xt,h), xt,h ∉ Xε}

=
H

∑
h=1

Zt,h1{πt(xt,h) ≠ π⋆(xt,h),Q(F ⋆h (xt,h), ε1⃗) = 0}

=
H

∑
h=1

Zt,h1{∃m ∈ [m] ∶ ∥fm
t,h(xt,h) − f⋆,mh (xt,h)∥ > ε},

where the last line follows from the fact that the definition of Q and the fact that πt(xt,h) ≠ π⋆(xt,h) implies that there
exists some m ∈ [M] for which ∥fm

t,h(xt,h) − f⋆,mh (xt,h)∥ > ε. The above implies that

TA ≤
M

∑
m=1

H

∑
h=1

Zt,h1{∥fm
t,h(xt,h) − f⋆,mh (xt,h)∥ > ε}.

● Bound on TB . First note that Lemma 21 implies that with probability at least 1 − δ, for all m ≤M and h ≤H ,

∥f⋆,mh (xt,h) − fm
t,h(xt,h)∥ ≤∆m

t,h(xt,h). (66)

Next, note that

TB ≤
H

∑
h=1

Z̄t,h1{πt(xt,h) ≠ π⋆(xt,h)} (67)

=
H

∑
h=1

1{Q(Ft,h(xt,h), ∆⃗t,h(xt,h)) = 0, πt(xt,h) ≠ π⋆(xt,h)},

where in the last line follows from plugging in the query condition under which Zt,h = 0. However note that for any
h ≤ H for which Q(Ft,h(xt,h), ∆⃗t,h(xt,h)) = 0, by the definition of Q and the fact that πt(xt,h) ≠ π⋆(xt,h), there
must exist some m ∈ [M] such that

∥f⋆,mh (xt,h) − fm
t,h(xt,h)∥ >∆m

t,h(xt,h).

However, the above contradicts (66), and thus with probability at least 1 − δ,

TB = 0. (68)

Plugging the above bounds on TA and TB in (65), we get that

R(τπ
⋆

t ) −R(τπt
t ) ≤ 2H

H

∑
h=1

1{xπ⋆
t,h ∈ Xε} + 2H

M

∑
m=1

H

∑
h=1

Zt,h1{∥fm
t,h(xt,h) − f⋆,mh (xt,h)∥ > ε}. (69)

Step 2: Aggregating over all time steps. Using the bound in (69) for each round t, we get that

RegT =
T

∑
t=1
(R(τπ

⋆
t ) −R(τπt

t ))
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≤ 2H
H

∑
h=1

T

∑
t=1

1{xπ⋆
t,h ∈ Xε} + 2H

T

∑
t=1

M

∑
m=1

H

∑
h=1

Zt,h1{∥fm
t,h(xt,h) − f⋆,mh (xt,h)∥ > ε}.

Using the fact that 1{a ≥ b} ≤ a2/b2 for any a, b ≥ 0, and the definition of Tε,h in the above, we get that

RegT ≤ 2H
H

∑
h=1

Tε,h + 2H
T

∑
t=1

M

∑
m=1

H

∑
h=1

Zt,h

∥fm
t,h(xt,h) − f⋆,mh (xt,h)∥2

ε2

≤ 2H
H

∑
h=1

Tε,h +
2H

ε2

M

∑
m=1

H

∑
h=1

Ψ
ℓϕ
δ (F

m
h , T ). (70)

where the last line follows from using the bound in Lemma 21.

Plugging in the form of Ψℓϕ
δ (Fm

h , T ) and ignoring log factors and constants, we get that

RegT ≲ 2H
H

∑
h=1

Tε,h +
2H

λε2

M

∑
m=1

H

∑
h=1

Regℓϕ(Fm
h ;T ) + log(1/δ).

Notice that ε is a free parameter above so the final bound follows by taking inf over all feasible ε.

D.5.3. TOTAL NUMBER OF QUERIES

Next, we bound NT -the total number of queries made by the learner within T rounds of interaction. We first define additional
notation. Fix any t ≤ T , and let ht denote the first time step at round t for which Zt,ht = 1, if such a time-step exists (and is
set to be H + 1 otherwise). We first observe that for all h ≤ ht, we have π⋆(xt,h) = πt(xt,h). To see this, note that

Zt,ht1{∃h < ht ∶ π⋆(xt,h) ≠ πt(xt,h)} ≤
ht−1
∑
h=1

Zt,ht1{π⋆(xt,h) ≠ πt(xt,h)}

≤
ht−1
∑
h=1

Zt,htZ̄t,h1{π⋆(xt,h) ≠ πt(xt,h)}

≤
ht−1
∑
h=1

Z̄t,h1{π⋆(xt,h) ≠ πt(xt,h)}

where in second inequality above, we used the fact that Zt,h = 0 (and thus Z̄t,h = 1) for all h < ht, by the definition of ht.
Observe that the right hand side in the last inequality above is equivalent to the term (67) in the bound on TB above (where
sum is now till ht instead of H). Thus, using the bound in (68), we get that

Zt,ht1{∃h < ht ∶ π⋆(xt,h) ≠ πt(xt,h)} = 0,

and thus

π⋆(xt,h) = πt(xt,h) for all h ≤ ht. (71)

Next, note that plugging in the definition of ht, we get that

NT =
T

∑
t=1

H

∑
h=1

Zt,h

≤H
T

∑
t=1

Zt,ht

=H
T

∑
t=1

Zt,ht1{xt,ht ∈ Xε} +H
T

∑
t=1

Zt,ht1{xt,ht ∉ Xε}

=H
T

∑
t=1

Zt,ht1{xt,ht ∈ Xε} +H
T

∑
t=1

Zt,ht1{xt,ht ∉ Xε, ∥∆m
t,ht
(xt,ht)∥∞ ≤

ε

4
}
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+H
T

∑
t=1

Zt,ht1{xt,ht ∉ Xε, ∥∆m
t,ht
(xt,ht)∥∞ >

ε

4
}

= TC + TD + TE ,

where TC , TD and TE are the first, second and the third term respectively in the previous line. We bound them separately
below.

● Bound on TC . Fix any t ≤ T . Using the relation in (71), note that π⋆(xt,h) = πt(xt,h) for all h < ht. Thus, the
corresponding trajectories would be identical till time step ht, which implies that xt,ht = xπ⋆

t,ht
. Using this property in

the TC , we get that

(TC)t =H
T

∑
t=1

Zt,ht1{xt,ht ∈ Xε}

=H
T

∑
t=1

Zt,ht1{xπ⋆
t,ht
∈ Xε}

≤H
T

∑
t=1

H

∑
h=1

Zt,h1{xπ⋆
t,h ∈ Xε}

=H
H

∑
h=1

Tε,h,

where the last line plugs in the definition of Tε,h.

● Bound on TD. First note that

(TD)t =H1{Q(Ft,ht(xt,ht), ∆⃗t,ht(xt,ht)) = 1,Q(F ⋆(xt,ht), ε1⃗) = 0, sup
m∈[M]

∆m
t (xt,ht) ≤ ε/4}.

In the following, we will show that all the conditions in the above indicator can not hold simultaneously. First note that
since Q(Ft,ht(xt,ht), ∆⃗t,ht(xt,ht)) = 1, there exists an F̃ such that

SelectAction(F̃ (xt,ht))) ≠ SelectAction(Ft,ht(xt,ht)) (72)

and

∀m ∈ [M] ∶ ∥F̃ (xt,ht)[∶,m] − Ft,ht(xt,ht)[∶,m]∥ ≤∆m
t,ht
(xt,ht). (73)

On the other hand, recall that Lemma 21 implies that

∀m ∈ [M] ∶ ∥F ⋆(xt,ht)[∶,m] − Ft,ht(xt,ht)[∶,m]∥ ≤∆m
t,ht
(xt,ht). (74)

Since, supm∆m
t,ht
(xt,ht

) ≤ ε/4, an application of Triangle inequality along with the bounds (73) and (74) imply that

∀m ∈ [M] ∶ ∥F ⋆(xt,ht)[∶,m] − F̃ (xt,ht)[∶,m]∥ ≤ 2∆m
t,ht
(xt,ht) < ε. (75)

But the above contradicts the fact that Q(F ⋆(xt,ht), ε1⃗) = 0 since both F̃ and Ft satisfy the norm constraints in the
definition of Q, but we can not simultaneously have that

SelectAction(F ⋆(xt,ht))) = SelectAction(Ft,ht(xt,ht)) = SelectAction(F̃ (xt,ht)),

due to (72). Thus, we must have that

(TD)t = 0.
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● Bound on TE . We note that

TE ≤H
T

∑
t=1

Zt,ht1{∥∆⃗t,ht(xt,ht)∥∞ > ε/4}

=H
T

∑
t=1

Zt,ht1{∃m ∈ [M] ∶∆m
t,ht
(xt,ht) > ε/4}

≤H
M

∑
m=1

T

∑
t=1

Zt,ht1{∆m
t,ht
(xt,ht) > ε/4}

≤H
H

∑
h=1

M

∑
m=1

T

∑
t=1

Zt,h1{∆m
t,h(xt,h) > ε/4},

where the last line simply upper bound the term for ht by the corresponding terms for all h ≤H .

Using Lemma 22 to bound the term in the right hand side for each m ∈ [M] and h ≤H , we get that

TE ≤
H

∑
h=1

M

∑
m=1

320HΨ
ℓϕ
δ (Fm

h , T )
ε2

⋅E(Fm
h ,

ε

8
; f⋆,mh ).

Gathering the bound above, we get that

NT ≤H
H

∑
h=1

Tε,h +
320H

ε2

H

∑
h=1

M

∑
m=1

Ψ
ℓϕ
δ (F

m
h , T ) ⋅E(Fm

h ,
ε

8
; f⋆,mh ).

Plugging in the form of Ψℓϕ
δ (Fm

h , T ) and ignoring log factors and constants, we get that

NT ≲H
H

∑
h=1

Tε,h +
320H

λε2

H

∑
h=1

M

∑
m=1

Regℓϕ(Fm
h ;T ) ⋅E(Fm

h , ε/8; f⋆,mh ) + log(1/δ).

Notice that ε is a free parameter above so the final bound follows by taking inf over all feasible ε.
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