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Abstract
When assisting human users in reinforcement
learning (RL), we can represent users as RL
agents and study key parameters, called user
traits, to inform intervention design. We study
the relationship between user behaviors (policy
classes) and user traits. Given an environment, we
introduce an intuitive tool for studying the break-
down of “user types”: broad sets of traits that re-
sult in the same behavior. We show that seemingly
different real-world environments admit the same
set of user types and formalize this observation as
an equivalence relation defined on environments.
By transferring intervention design between envi-
ronments within the same equivalence class, we
can help rapidly personalize interventions.

1. Introduction
Mobile Health (mHealth) applications, like a physical ther-
apy (PT) app that recommends personalized exercises to a
user working to regain ankle mobility, are gaining popularity
as cost-effective interventions. In these applications, per-
sonalization can be achieved by inferring the user-specific
internal obstacles to reaching health targets, then designing
treatments for those obstacles (Shin et al., 2022). In this
paper, we provide a set of novel tools for studying the rela-
tionship between user-specific obstacles and user behavior,
thereby generating insights for treatment design.

We model user-internal obstacles as discrepancies between
the real-world environment, formalized as a Markov Deci-
sion Process (MDP), and the user’s perceived environment,
another MDP. We want the user, as a Reinforcement Learn-
ing (RL) agent, to adopt a target policy in the real-world
environment (e.g., perform recommended daily exercises un-
til full recovery), but since the user plans in their perceived
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environment, their perceived optimal policy can deviate dras-
tically from the target (e.g., prematurely terminate the PT
program due to the perceived infeasibility of full recovery).

For a real environment, we characterize the user-perceived
environments using MDP parameters that map to well-
studied human traits—which we call user traits—in the
behavioral sciences. In particular, for many mHealth ap-
plications, a user’s confidence in their physical capabilities
and their ability to perform long-term planning (their degree
of myopia) both significantly impact their success in pre-
scribed fitness regimens (Picha et al., 2021b). In our work,
we model myopia as the discount factor and confidence
as the dynamics (specifically, the perceived probability of
positive outcomes) of the user’s MDP (Section 3).

Given a real environment, we introduce a tool for visual-
izing the relationship between user traits (the user’s MDP
parameters) and the corresponding user behavior (the user’s
possible policies). Specifically, within the environment, we
study the breakdown of “user types”—regions in the space
of all possible user traits that define the same user behavior—
and visualize these types as two-dimensional behavior maps
(Section 4). Behavior maps shed light on the extent to which
it is possible to infer user traits by observing user behavior.

Finally, we show that seemingly different real-world en-
vironments admit the same behavior maps. We formalize
this observation as an equivalence relation defined on real-
world environments (Section 5). We map several environ-
ments commonly used in the RL literature (that also model
mHealth tasks) to just a small set of equivalence classes,
where the sets of user behaviors are similar across different
environments within each class (Section 6.2). This result
allows us to provide guidelines on intervention design in
various complex environments by lifting insights from an
equivalent and simpler toy environment (Section 6.4).

2. Related Work
Inferring a user’s parameters from demonstrations.
Like us, some works (Evans et al., 2016; Shah et al., 2019;
Zhi-Xuan et al., 2020) model humans as RL agents with dif-
ferent perceived MDPs. However, inferring an agent’s MDP



parameters from demonstration is a difficult and nonidenti-
fiable problem (Shah et al., 2019). This paper shows that,
while user parameters cannot be exactly recovered from be-
havior data in most settings, we can infer general rules about
the relationship between user parameters and user behavior.
These rules can help us design mHealth interventions.

Equivalence in Inverse RL (IRL). In IRL, when pa-
rameters of an MDP cannot be uniquely identified, we in-
fer classes of these parameters, typically rewards (Ziebart,
2010) or transitions functions (Reddy et al., 2018; Golub
et al., 2013), that are equally likely under the behavior data
provided by one user. In this work, we study the behaviors
of multiple users and equate different environments (MDPs)
in which the partitioning of the set of users by behavior is
similar.

Equivalence of MDPs. Notions of equivalence between
MDPs allow for knowledge transfer between different en-
vironments (Soni & Singh, 2006; Sorg & Singh, 2009).
For example, bisimulation-based equivalence definitions
are used in MDP minimization, where large state spaces
are reduced to speed up planning (Givan et al., 2003). Re-
laxed versions of bisimulations, e.g., MDP homomorphism
(Biza & Platt, 2018), stochastic homomorphism (van der Pol
et al., 2020), and approximate homomorphisms (Ravindran
& Barto, 2004) allow optimal policies in simple MDPs to
be lifted to desirable policies in more complex and compa-
rable MDPs. More general definitions of MDP equivalence
can be defined through other methods of state aggregation
(e.g., value equivalence) (Li et al., 2006). While these no-
tions of equivalence are defined over the set of MDPs, we
decompose an MDP into task-specific and user-specific com-
ponents and consider equivalences between the task-specific
components of MDPs while varying the user-specific ones.

3. Formalizing Users as RL Agents
We formalize an RL environment for an mHealth application
as a Markov Decision Process (MDP). An MDP is a 5-tuple,
M = ⟨S,A, T,R, γ⟩, consisting of a set of states S, a
set of actions A, a reward function R : S × A × S →
R, a transition function T : S × A × S → [0, 1] and a
discount rate γ ∈ [0, 1]. For simplicity, in this paper, we
only consider discrete state spaces.

An optimal RL agent acts in M according to a policy
πM : S → A, giving a cumulative reward (expected re-

turns): Jπ
M = E

[
T∑

t=0
γtrt

]
, where rt is the random variable

representing the reward received at time t. The optimal pol-
icy for M maximizes the expected returns: π∗

M = max
π

Jπ .

We want the user to adopt the optimal policy π∗
M in M.

However, the user plans in their perceived environment,

Muser = ⟨Suser,Auser, T user, Ruser, γuser⟩ and adopts the pol-
icy, π∗

Muser , that is optimal for Muser. Discrepancies between
the real environment and the user’s perceived one can lead
to drastic differences between the target policy, π∗

M, and the
adopted one, π∗

Muser .

In this work, we shall assume that the perceived environ-
ment differs from the real only in the transition function
(modeling the user trait confidence) and the discount rate
(modeling the user trait myopia). Specifically, we define
a world as a tuple W = ⟨S,A, R⟩ of states S, actions A,
and reward function R. This captures the real environment
and the task in an application of interest (see Fig. 2 for
example-grid worlds). Since the user’s perceived states,
actions, and rewards match the real environment, we set
Suser = S, Auser = A and Ruser = R.

Furthermore, since we are interested in the set of optimal
policies generated by varying the user’s perceived environ-
ment Muser, we do not keep track of the real transition
function T and the real discount rate γ. Instead, the user’s
policy depends only on their (fixed) perception of the envi-
ronment, T user, and their (fixed) discount rate γuser. The real
T is useful only when the user is learning (updating T user)
based on data generated by T .

We use γuser ∈ [0, 1] to represent the user’s level of myopia.
To represent the level of confidence, we parameterize the
user’s transition T user

p function with p ∈ [0, 1], which is the
level of stochasticity in the environment transitions that the
user perceives. Other parameterizations of T user are possible,
but this one aligns with the intuition that a user with low
confidence is unsure whether their actions a ∈ Auser will
lead to desired outcomes s′ ∈ Suser.

In Section 4, we model how and why users with distinct
traits behave differently (i.e., adopt different policies) in the
same real-life setting. For example, two people with dif-
ferent levels of myopia would judge different PT behaviors
to be optimal in their respective MDPs. However, we first
connect our formalization of user traits (their level of my-
opia γuser, and their confidence level p parameterizing T user

p )
to well-studied constructs in psychology and behavioral
science.

Mapping RL to Behavior Science. Myopia corresponds
to the concept of temporal discounting in psychology. In
user MDPs, we represent temporal discounting with γuser ∈
[0, 1). This captures people’s tendency to undervalue future
rewards, often leading to unhealthy behavior (Story et al.,
2014). However, we note that in RL, discounting is expo-
nential by default, which does not capture the phenomenon
observed in humans called preference reversal (Ainslie &
Haslam, 1992; Shah et al., 2019) (which hyperbolic dis-
counting is more suited for).
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Figure 1. Example behavior map (Big-Small world). The two
colors indicate the two possible behaviors (see Fig. 2c for the
world and the behaviors). Annotations describe the procedure
for deriving the equivalence class. The x-axis varies over the
discounting factor, γ; the y-axis varies over the confidence level, p.
“Extreme” users, i.e., corners of the map, are labeled as circles. The
number of “behavior switches” when tracing each edge between
extreme users (from A to B, to C, to D, and back to A) are labeled
as squares.

In behavioral science, confidence, also known as self-
efficacy, measures an agent’s belief in their capability to
perform a task (Picha et al., 2021a). Intuitively, this is the
user’s perceived probability that their intended outcome
can be achieved through action. In user MDPs, we rep-
resent the user’s confidence level with p ∈ [0, 1], which
is the level of stochasticity in the transitions. Concretely,
T user
p (s, a, s′) = p for a user’s intended outcome s′ from

performing action a in state s. We divide the remaining
1 − p probability equally among the alternate outcomes:
T user(s, a, ŝ′) = 1−p

|Ŝ| . Our current instantiation of confi-
dence is simple, and it is equivalent to adding epsilon-noise
to the real-world transition matrix. However, the transition
T user
p can be a function of p in more complex ways.

4. Behavior Maps: A Tool for Understanding
User Traits and User Behaviors

In the previous section, we formalized the user’s MDP
Muser and their optimal policy π∗

user. We now introduce be-
havior maps, a tool for studying the relationship between the
user-specific parameters (T user

p , γuser) and the corresponding
optimal user policy π∗

user.

Given a world W , we denote the set of possible (determin-
istic) policies, π : S → A, as ΠW . We note that in many
real-life applications, distinct policies may functionally de-

scribe the same type of behavior (e.g., if we are interested
in overall adherence, skipping PT exercises every Tuesday
can be considered functionally equivalent to skipping every
Monday). Thus, we work with a concept that generalizes
the notion of policy; we define a “user behavior”, denoted
B ⊂ ΠW , as a set of policies considered equivalent in the
application domain. We study how differences in user traits
lead to different user behaviors.

To do this, we introduce a behavior map of the world W as
a mapping of user traits to the corresponding user behaviors
in W . That is, the behavior map BW maps (γuser, p) to the
user behavior B that contains the optimal policy for the user
MDP Muser = ⟨S,A,R, T user

p , γuser⟩.

In Fig. 1, we show an example of a behavior map. We see
that it classifies the user parameter space into regions where
parameters map to the same user behavior. In this world,
there are only two behaviors (indicated by color), and the
user’s behavior depends on the value of their user traits (the
two axes).

Applications of Behavior Maps. We demonstrate that
behavior maps can inform the design and deployment of
interventions on user traits (for example, interventions to
increase γuser). Specifically, they can help us (1) determine
to what extent user traits are identifiable through behavioral
observations; (2) warm-start an intervention strategy for
interacting with new users.

Identifiability of User Traits. Since behavior maps tell us
which set of parameters gives the same user behavior, they
allow us to anticipate the limits of what we can infer about a
user (using Inverse Reinforcement Learning (IRL) or related
methods) by observing their behavior in a given world. For
example, in worlds with the behavior map in Fig. 1, we can
distinguish between users with low and high discount fac-
tors because users have different optimal policies (different
colors). On the other hand, the difference in confidence
does not generally correspond to a difference in behavior.
Therefore, we cannot generally distinguish between users
with different confidence levels. However, we find that be-
havior maps can inform intervention design, even when the
parameters of individual users cannot be exactly inferred.

Warm-start Intervention Strategy. Given a world and a
new user, behavior maps can help identify interventions that,
a priori, is likely to be more impactful. In particular, the
more variation there is in user behavior along a given axis,
the more likely an intervention on the corresponding trait
will change the user’s behavior. For example, in Fig. 1, we
know that an intervention on γuser is more likely to change
the user’s behavior than an intervention on T user

p .

Although useful, directly computing the behavior map for a



complex application such as PT requires solving user MDPs
for a range of user parameters and can thus be computation-
ally costly. Instead, to get the same insights, we reduce the
PT world W to a simpler toy world W ′, for which we can
easily compute BW′ . We define an equivalence relation that
allows us to make this reduction.

5. A Behavior-Based Equivalence Relation
This section uses behavior maps to draw analogies between
seemingly different worlds.

Suppose that two different applications, such as PT and
dieting, have the same behavior map, such as the one from
Fig. 1. Then, in both applications, we know that confidence
does not impact user behavior and that users with “low”
gamma have one behavior, while users with “high” gamma
have another. In this way, we consider PT and dieting
equivalent worlds because intervention design principles
can be transferred from one to the other. For example, in
both cases, the initial intervention strategy should focus on
γuser instead of T user

p . Note that this transfer can work in
cases where the state and action spaces differ between the
two applications because the behavior maps depend on high-
level behaviors (not exact states and actions). For example,
in PT, the behaviors may be a set of exercises. In dieting,
the behaviors may be a set of food choices. In either case,
there is a desired behavior (e.g., choosing nutritious foods
or choosing the right exercises) and an undesired behavior.
We are only concerned with what interventions will help the
user go from undesired to desired behaviors, not that the
actions defining those behaviors match exactly.

Moreover, we can transfer between worlds with similar
but not necessarily identical behavior maps. For example,
we might see that both PT and dieting have two possible
behaviors, where users with lower γuser act differently from
users with higher γuser. However, what is considered to be
“low” or “high” γuser need not match exactly between the
two applications: in PT, the range for “low” γuser could be
[0, 0.3] and in dieting the range could be [0, 0.2]. If we knew
both applications had similar behavior maps, we could still
transfer the knowledge that the initial intervention strategy
should focus on γuser instead of T user

p . We could also transfer
the knowledge that users with different γuser are identifiable,
while users with different T user

p are not.

5.1. Equivalence Between Behavior Maps

Thus motivated, we call two behavior maps equivalent if
the shapes of the decision boundaries between user behav-
iors in the behavior maps are the same and use an equiva-
lence definition invariant to stretching or translation of these
boundaries. We formalize this in Definition 5.1.

In the following, we assume, without loss of generality, that

the axes of each behavior map BW is scaled to the unit
interval, that is, BW is a map over I2, where I = [0, 1].
Thus, the decision boundary classifying different user be-
haviors in BW is a 1-dimensional submanifold in I2 defined
by the map gW : [0, 1] → I2 satisfying some additional
constraints. Although we consider the case where the de-
cision boundary is connected here, our definition extends
straightforwardly to cases where it is not.
Definition 5.1 (World Equivalence Induced by Behavior
Map). We define an equivalence relation, ≡map, on the set
of discrete worlds W by

W ≡map W ′, W,W ′ ∈ W

when (1) the number of behaviors in BW and BW′ are equal,
and (2) there is a continuous map h : I2× [0, 1] → I2, such
that ht : I

2×{t} → I2 is bijective, where h0 is the identity
map, and where h1 satisfies h1 ◦ gW = gW′ .

Note that we can simply say that h is an ambient isotopy
between the decision boundaries in W and W ′.

The idea behind Definition 5.1 can be made more intuitive.
We consider each behavior map as a diagram in which (i)
ni number of vertices (each representing a switch between
behaviors) is placed on the i-th edge, and where (ii) each
pair of vertices is connected by a curve defined by a decision
boundary that separates two user behaviors (see Fig. 1). We
say that two maps are equivalent if they are labeled by the
same number of distinct behaviors, and, as diagrams, they
are topologically equivalent: the decision boundary in one
behavior map can be continuously deformed, by using the
map h, to look like that in the other.

For the set of worlds studied in this work, we note that
whether two worlds are equivalent boils down to counting
the number of behavior switches along the edges of their
behavior maps (counterclockwise, starting from the bottom
edge). We can focus exclusively on the edges because our
worlds do not induce behavior maps with decision bound-
aries that behave differently in the middle (e.g. Fig. 19). By
counting the number of behavior switches along the edges,
we can represent the set of worlds in the same equivalence
class as a count vector (see Fig. 1).

5.2. Intervention Transfer Between Equivalent Worlds

Recall that our primary motivation for defining an equiva-
lence relation on worlds is to develop intervention strate-
gies in simple settings and transfer them to more complex
analogous ones. This section provides the formalism for
transferring interventions between equivalent worlds. In
Section 6.1, we will introduce a set of simple worlds to
which many commonly studied RL environments can be
reduced through our equivalence.

Given a world W , we represent a single intervention on
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(a) A 6 × 5 Wall world where agents can
pass directly through a costly wall (orange)
or take the longer, safer path around it (blue).
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(b) A 4 × 8 Cliff world where agents can
walk close to the cliff and risk ruin (blue) or
keep space but walk farther (orange).
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(c) A 5 × 5 Big-Small world where agents
can walk straight down to a small reward
(orange) or farther to a bigger reward (blue).

Figure 2. Each atomic world has two qualitatively distinct behaviors (shown with blue and orange arrows). Each diagram shows what the
world looks like for one setting of the parameters, and other sizes are usually also valid.

a user’s myopia and confidence level as a real-valued pair
(∆γ ,∆p) ∈ I2 that is added to the user’s current parameters.
Thus, a sequence of interventions defines a (piece-wise
linear) path, which we call an intervention strategy and
denote by τW , in the behavior map BW . Our goal is to map
an intervention strategy τW in BW , that realizes a behavior
change, to a strategy τW′ in an equivalent map BW′ that
realizes an analogous behavior change.

We first observe that the continuous map h in Definition 5.1
induces a mapping from the set of user parameters related
to one world W to the user parameters related to W ′, de-
fined by h1 : I2 → I2. Hence, every path τW defines a
path τW′ = h1 ◦ τW . Since h continuously deforms the
decision boundary of BW , it preserves the number of times
τW intersects the decision boundary in BW . In particular,
if τW represents an intervention strategy that achieves N
number of behavior changes in BW , then τW′ is a strategy
that achieves the same number of behavior changes in BW′ .

Note that, unlike knowledge generalization approaches in
RL wherein one computes a mapping between all param-
eters of two MDPs, our approach to intervention transfer
between two worlds by-passes explicit mappings between
the state and action sets of W and W ′. Instead, we rely on
h, the mapping between user parameter and policy spaces.

In practice, explicitly computing h can be difficult. In the
next section, we show that we can derive a more general set
of heuristics for intervention design in a complex world by
reasoning about an equivalent simple world.

6. Atomic Worlds: Simple Representatives of
Equivalence Classes

Under Definition 5.1, we seek the simplest representative,
called atomic worlds, for each equivalence class. User be-
haviors can be characterized in atomic worlds, and the in-
sights transferred thereafter to more complex equivalent
worlds. We describe three atomic worlds and reduce com-
monly studied worlds in RL literature to our atomic worlds.

6.1. Atomic Worlds

We visualize an instance of each of the following worlds in
Fig. 2 and their corresponding behavior maps in Fig. 3.

The Big-Small world is an atomic world that captures a trade-
off between choosing a smaller, more convenient reward and
a bigger reward that is more difficult to reach. In mHealth,
this world reflects scenarios in which smaller immediate
rewards, such as the time saved by skipping PT for the
day, preclude larger but delayed rewards, such as a fully
rehabilitated ankle.

The Cliff world captures settings in which a harmful absorb-
ing state may be reached due to an action going awry. For
example, deciding the intensity of the PT regimen can be
modeled as a Cliff world. A high-intensity regimen could
accelerate recovery but also risk re-injuring the patient.

The Wall world captures the choice between a short, costly
path to the goal and a longer, free path to the same goal.
This can model the trade-off in choosing the type of physical
therapy: virtual therapy may be more affordable, while in-
person therapy is more costly and targeted.

In the above, we note that different aspects of user decision-
making (e.g., choosing the intensity vs choosing the type
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(c) Big-Small world example behavior
map belonging to equivalence class [1,
0, 1, 0].
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(d) Chain world example
behavior map belonging
to equivalence class [1, 0,
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(f) Gambler’s Ruin
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example behavior map
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behavior map belonging
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Figure 3. Seemingly different worlds (bottom row) are equivalent to one of our atomic worlds (top row).

of therapy) in the same mHealth application (PT), can map
to different equivalence classes. We hypothesize that more
complex worlds (e.g., larger portions of the user decision-
making process in PT) can be captured by compositions of
simpler atomic worlds. In future work, we are interested
in characterizing the set of complex worlds that can be
studied through decomposition into atomic worlds. Further
discussion can be found in Section 7 and Appendix C.

6.2. Atomic Worlds Capture Commonly Studied RL
Environments

We compare the behavior maps corresponding to four types
of RL environments commonly studied in the literature:
Chain, RiverSwim, Gambler’s Fallacy, and Café worlds (de-
tails on each world are in Appendix A), and illustrate that
the set of worlds they define reduces to the three atomic
worlds we identify in Section 6.1. We note that these RL
environments are diverse in their state and action spaces;
more interestingly, they are diverse in how they map to
real-life tasks. Thus, we expect that many useful mHealth
applications can be modeled by known atomic worlds or
straightforward combinations of atomic worlds (see Sec-
tion 7 and Appendix C for more details), allowing us to
transfer intervention design from familiar, simpler settings

onto unexplored and more complex ones.

Under our definition, Chain (Fig. 3d), RiverSwim (Fig. 3e),
Gambler’s Fallacy V1 (Fig. 3f), and the Café worlds
(Fig. 3h) are equivalent to the Big-Small world (Fig. 3c);
these are worlds in which the user chooses between a read-
ily available but small reward (i.e., disengaging in Chain,
swimming downstream in RiverSwim, and performing the
Finish action in the Gambler’s Ruin world) and a greater
but more time-consuming reward. Gambler’s Fallacy V2
(Fig. 3g) is equivalent to Cliff World—both worlds have a
“catastrophic absorbing state,” i.e., a nonzero risk of ending
up in a terminal state with a negative reward.

6.3. The Equivalence Definition Is Robust to Parameter
Perturbations in World Definitions

We want a world to remain within its equivalence class de-
spite minor parameter adjustments (e.g., the world for a
month-long PT program should be in the same class as that
for a 2-month program). This is evidence that our equiv-
alence definition captures essential rather than incidental
qualities of applications.

In Fig. 4, we verify that the Big-Small world remains within
its equivalence class despite parameter changes, such as the
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Figure 4. A Big-Small world stays within its equivalence class for
many different parameter combinations. The example behavior
maps have different values for the world width and the ratio of the
small reward to the big reward, while the rest of the parameters are
fixed as height = 7 and Big far R = 300.

world’s width or the ratio of the big to a small reward. In
Appendix B, we provide additional evidence of how our
equivalence classes withstand perturbations across more
parameters for all 8 worlds investigated.

6.4. Heuristics for Intervention Transfer

Many real-world applications may be roughly mapped to
an atomic world through domain knowledge rather than
computing an explicit map h, as in Section 5.2. For example,
behavior scientists can often describe the types of expected
user behavior, e.g., “how many different behaviors are there
for users with very low confidence?”. Absent a map h, we
cannot transfer an intervention strategy in precise terms.
However, the broader insights we obtain from studying the
behavior maps of atomic worlds can be easily transferred.
For example, conclusions we reach on the identifiability of
user traits and the effectiveness of a particular warm-start
intervention strategy (see Section 4) apply to all worlds
within the same equivalence class.

7. Discussion & Future Work
Exhaustive World Search. We expect there to be many
equivalence classes outside the three identified in this pa-

per. The existence of such classes may be especially rele-
vant when we try to capture multiple distinct aspects of an
mHealth application in a single world. In future work, we
intend to explore the space of possible equivalence classes
more exhaustively.

World Compositions. Complex real-life scenarios are un-
likely to neatly map to a singular atomic world; however,
we conjecture that some worlds may fall into compositions
of atomic worlds. Some initial experiments with compos-
ite worlds indicate that the composition of the Big-Small
and Cliff worlds leads to a behavior map that combines
the atomic worlds’ respective maps. See Appendix C for
examples of these experiments. This finding further sup-
ports the generality of our equivalence classes as seemingly-
complicated scenarios can be broken down into atomic
worlds that each capture a unique aspect of the application.

Other User-Intrinsic Obstacles. While we focus on my-
opia (γuser) and confidence (T user

p ) in this paper, we are
interested in modeling a wider range of user-intrinsic ob-
stacles, as differences between the real and user-perceived
MDP. For motivation, works like Evans et al. (2016), under
a different model of the user’s decision-making process, cap-
ture behaviors that cannot be parameterized as combinations
of γuser and T user

p in the Café world. This observation raises
the question of whether our formal framework can capture
behaviors observed under other paradigms of sequential
decision-making (e.g. hyperbolic discounting, replanning,
etc).

Real World Dynamics vs. User Perceived Dynamics.
We note that the definition of behavior maps does not rely
on the environment’s true dynamics T since the user’s policy
is computed based on their perceived dynamics T user

p . In
reality, if T and T user

p are significantly different, it would be
reasonable to assume that the user iteratively updates T user

p

as they interact with the real world.

The Topology of Behavior Maps. For the set of worlds in
this work, verifying that any two are equivalent reduces to
matching the number of behavior changes along the edges
of their behavior maps. That is, the decision boundaries of
their behavior maps have no interesting topology. See Ap-
pendix D for a discussion on intervention transfers between
worlds whose behavior maps are topologically distinct in
more nuanced ways. Future research could characterize
the set of worlds for which the decision boundaries of the
behavior maps are not as “well-behaved”.

8. Conclusion
In this work, we propose a novel tool, the behavior map, to
study the relationship between user traits and user behaviors



for worlds in which the user acts as an RL agent. We define
an equivalence relation between worlds based on the shapes
of their corresponding behavior maps. We show that in-
tervention strategies can be transferred between equivalent
worlds. In particular, we demonstrate that many seemingly
different RL environments map to one of a few equivalence
classes, each represented by a simple atomic world. We fur-
ther argue that many real-world applications can be mapped
to atomic worlds by leveraging domain knowledge in behav-
ioral science and psychology. Finally, we show how broad
insight into intervention design for simple worlds can be
lifted to complex ones in the same equivalence class.
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A. Descriptions of Each World from the Literature
In this section, we present the MDPs for the MDPs from the mHealth literature we study in this work, i.e., the Chain
World, RiverSwim World, and Gambler’s Ruin in Fig. 5, Fig. 6, and Fig. 7, respectively. Blue arrows indicate the behavior
corresponding to the blue behavior in the corresponding behavior maps and, likewise, for orange arrows.

Figure 5. In the Chain world, users can choose to “exercise,” or progress step-by-step to reach the desired goal. At each stage, they also
have the option to “disengage,” which results in a smaller reward and the termination of their progression.

Figure 6. In the RiverSwim world, the user can choose the rightward “upstream” action, which has a chance of successfully advancing
the user toward the larger reward but also a failure probability of staying in place or falling behind. They can also choose the leftward
“downstream” action that deterministically moves the user toward the small reward on the far left.



Figure 7. In the Gambler’s Ruin (Bandit Problem) world, users can choose the “continue” action, which can either move the user one step
left toward the dead-end state or one step right toward the goal state. They can also choose the “finish” action, moving them directly to the
dead-end or goal state.

Veg.
(200)

0

0 0 0 0 0

0 0

0 0

Donut
(50) 0 0

0 0

0 0

0 0 0 0 0

0 Noodle
(100)

Donut
(50) 0 0 0

0

0

Cafe World
Veg/Noodle
Donut

Figure 8. In the Café world, users start at the bottom of a 13 × 8 grid and must choose where to get food. The choices are two donut
stores, a noodle shop, and a vegan café. The rewards of 50, 50, 100, and 200 represent the long-term satisfaction someone might feel from
eating the food. An important dynamic in this world is that users must pass the donut stores to reach the noodle shop or vegan café, and
the noodles are closer to the start than the vegan café. In our initial experiments, we look at the choice between the unhealthy choice
(donuts) versus the comparatively healthy choice of noodles or vegan food. We indicate the paths users take when making the unhealthy
choice in orange and the healthy choices in blue. In Appendix C, we look at the dynamics of the behavior maps when all three choices are
evaluated separately.



B. Parameter Perturbations for Each World
In the following, we present more comprehensive investigations into the invariance of the different worlds to changes in
the world parameters under our definition of equivalence. Different worlds have different sets of parameters to perturb and
ranges for which they remain invariant.
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Figure 9. This array of graphs depicts behavior maps within the Cliff world across variations of three parameters: height, width, and reward
size. These maps are placed in the same equivalence class under our definition, indicating their robustness to parameter perturbations.
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Figure 10. This array of graphs depicts behavior maps within the Big-Small world across variations of multiple parameters, such as
world size and magnitude of rewards. While the graphs are not identical, all these maps are still in the same equivalence class under our
definition, indicating their robustness to parameter perturbations.
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Figure 11. This array of graphs depicts behavior maps within the Chain world across variations of six parameters, including world size
and disengagement probabilities. These maps are placed in the same equivalence class under our definition, indicating their robustness to
parameter perturbations.



0.
4

0.
56

0.
71

0.
83

0.
99

Co
nf

id
en

ce
 le

ve
l p

width=5.00
D
RR

width=6.00
D
RR

width=7.00
D
RRR

width=8.00
D
RRR

0.4 0.56 0.71 0.83 0.99
Discount factor 

0.
4

0.
56

0.
71

0.
83

0.
99

Co
nf

id
en

ce
 le

ve
l p

big_r=5.00
D
RR

0.4 0.56 0.71 0.83 0.99
Discount factor 

big_r=37.00
D
RR

0.4 0.56 0.71 0.83 0.99
Discount factor 

big_r=68.00
D
RR

0.4 0.56 0.71 0.83 0.99
Discount factor 

big_r=100.00
D
RR

Gamblers World (pC) Equivalence Class Invariance
Default: width=5, prob=0.8, gamma=0.9, big_r=10, small_r=0

Figure 12. This array of graphs depicts behavior maps within the Gambler’s Ruin world across the width and reward size variations while
holding the failure probability

(
pF

)
constant. These maps are placed in the same equivalence class under our definition, indicating their

robustness to parameter perturbations.
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Figure 13. This array of graphs depicts behavior maps within the Gambler’s Ruin world across the width and reward size variations while
holding the “continue” probability

(
pC

)
constant. These maps are placed in the same equivalence class under our definition, indicating

their robustness to parameter perturbations.
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Figure 14. This array of graphs depicts behavior maps within the RiverSwim world across the width and reward sizes variations. These
maps are placed in the same equivalence class under our definition, indicating their robustness to parameter perturbations.
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Figure 15. This array of graphs depicts behavior maps within the Wall world across variations of world size and reward magnitude. These
maps are placed in the same equivalence class under our definition, indicating their robustness to parameter perturbations.
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Figure 16. This array of graphs depicts behavior maps within the Cafe world, presented in (Evans et al., 2016), across variations of relative
reward for the types of eating options: Donuts, noodles/veggie. These maps are placed in the same equivalence class under our definition,
indicating their robustness to parameter perturbations.



C. Initial World Composition Experiments
In this section, we present two behavior map perturbations that indicate that more complex worlds can be decomposed as a
combination of several smaller atomic worlds.

Big-Small & Cliff Composition. The first, seen in Fig. 17a, is a Cliff world with an added option of disengaging. This
disengagement state is modeled as a state immediately below the start state in Fig. 2b. The disengagement is associated with
a small positive reward, which can, e.g., be interpreted as the user’s sense of relief for not having to engage in physical
therapy anymore (which is obviously smaller than the faraway reward of being fully rehabilitated). The compositionality
comes from the observation that the user now has two choices: (1) to engage or disengage, and (2) if they engage, be safe, or
take risks. The first choice is similar to a Big-Small world (disengage for a small reward or engage for an expected bigger
reward farther away).

Big-Small & Big-Small Composition. The second composition, whose behavior map is shown in Appendix C, is the
Café world with the choices between donuts, noodles, and vegan. Intuitively, the agent is now faced with two separate
decisions, where both are the choice between a small reward near and a relatively larger reward farther away.
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(a) In the Cliff world with the possibility for disengagement,
the agent is effectively faced with first the choice between
a small and big reward, and then the choice of strategy for
traversing the cliff (safe or risky). This effect is evident from
the new decision boundary that crosses from the top edge’s
left side to the bottom edge’s right side, just like a Big-Small
decision boundary.

0.4 0.71 0.99
Discount factor 

0.
4

0.
71

0.
99

Co
nf

id
en

ce
 le

ve
l p

Cafe Map
Vegan
Donut
Noodle

(b) In the Café world, the agent is effectively faced with two,
sequential Big-Small worlds. This can be seen by considering
the boundary between the orange and blue areas as the first de-
cision between a far and big reward (noodle/vegan) and a near
and small reward (donuts). If the user avoids the donuts, they
are faced with the choice between another far and big reward
(vegan) and a near and (relatively) small reward (noodle).

Figure 17. Two worlds that appear to be straightforward compositions of two atomic worlds. Characterizing these compositions and
understanding whether and how they can be useful is an interesting avenue for future research.



D. Consideration on the Interior of Behavior Maps
We have argued that the most important part of behavior maps is the extreme regions, i.e. the behavior along the edges.
One way to argue this is by using literature from the behavioral sciences, which has been one motivating factor. Another
observation one can make is the following. Let worlds (a) and (b) in Fig. 18 be two different worlds that belong to the same
equivalence class [1, 0, 1, 0]. Since n1 = n3 = 1, there can be no ambiguity about how the vertices are connected. However,
we place no restrictions on where along the γ-axis the vertices are. If we decide the blue region is the desired behavior, but
we observe the user in the orange region (regardless of where), the optimal intervention will be the same in both worlds (a)
and (b).

In the more complex case shown in Fig. 19, both worlds (a) and (b) are in the same equivalence class [2, 0, 2, 0], despite
having very different middle regions. This disparity arises since

∑
i ni ≥ 4 and there will be more than one valid way to

connect the vertices. If we again imagine that blue is the desired behavior and orange is observed, these two worlds will still
share the optimal behavior, as indicated with gray arrows in Fig. 19.

We have not proven this exhaustively; atomic worlds where this observation does not hold might still arise. From our initial
experiments, however, worlds with

∑
i ni ≥ 4 appear rare.

Optimal intervention
Optimal intervention

(a) Behavior Map (b) Behavior Map

Figure 18. Two different worlds with equivalent and simple behavior maps. Gray arrows indicate the optimal intervention for an agent
that exists in the orange region. Despite having their decision boundaries in different locations along the γ-axis, the best intervention is
the same.

(a) Behavior Map (b) Behavior Map

Optimal intervention
Optimal intervention

Figure 19. Two different worlds with more complex and differing behavior maps still belong to the same equivalence class. Despite
having very different interior regions, in many cases, the optimal intervention on an agent located in the orange region would be the same.


