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Abstract
In this paper, we investigate the problem of of-
fline reinforcement learning with human feedback
where feedback is available in the form of prefer-
ence between trajectory pairs rather than explicit
rewards. Our proposed algorithm consists of two
main steps: (1) estimate the implicit reward us-
ing Maximum Likelihood Estimation (MLE) with
general function approximation from offline data
and (2) solve a distributionally robust planning
problem over a confidence set around the MLE.
We consider the general reward setting where the
reward can be defined over the whole trajectory
and provide a novel guarantee that allows us to
learn any target policy with a polynomial number
of samples, as long as the target policy is cov-
ered by the offline data. This guarantee is the
first of its kind with general function approxima-
tion. To measure the coverage of the target policy,
we introduce a new single-policy concentrability
coefficient, which can be upper bounded by the
per-trajectory concentrability coefficient. We also
establish lower bounds that highlight the necessity
of such concentrability and the difference from
standard RL, where state-action-wise rewards are
directly observed. We further extend and analyze
our algorithm when the feedback is given over
action pairs.

1 Introduction

In standard reinforcement learning (RL) setting, the agent
learns to maximize an observed numerical reward signal.
However, finding appropriate numerical rewards can often
be challenging in practice, and getting rewards right signif-
icantly impacts the effectiveness of RL algorithms (Wirth
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et al., 2017). To address this challenge, preference-based RL
with human feedback (RLHF) has emerged as a promising
alternative (Christiano et al., 2017). In RLHF, the agent
does not receive a numerical reward signal, but rather feed-
back from a human expert in the form of preferences for a
state-action trajectory in given pairs of trajectories. RLHF
has gained considerable attention across multiple applica-
tion domains, including games (MacGlashan et al., 2017;
Christiano et al., 2017; Warnell et al., 2018), large language
models (Ziegler et al., 2019; Stiennon et al., 2020; Wu et al.,
2021; Nakano et al., 2021; Ouyang et al., 2022; Glaese et al.,
2022; Bai et al., 2022; Ramamurthy et al., 2022; Liu et al.,
2023), and robot learning (Brown et al., 2019; Shin et al.,
2023).

In this work, we focus on the problem of offline RLHF,
where the learning process relies exclusively on pre-
collected offline data without active interaction with the
environment. Offline RL has gained significant attention
in various applications where conducting real-time online
experiments may be costly. In the context of RLHF, an
offline setting is particularly relevant due to the high cost
and latency associated with obtaining human feedback. One
of the key challenges in offline RL is the limited coverage
of available offline data. Since coverage of the entire
state-action space is rarely feasible in practice (Chen and
Jiang, 2019a), recent empirical and theoretical approaches
to offline RL leverage pessimism so as to rely only on the
coverage of one comparator policy (possibly the optimal
one), i.e., the so-called partial coverage condition (Yu et al.,
2020; Kidambi et al., 2020; Rashidinejad et al., 2021a; Li
et al., 2022a; Shi et al., 2022; Yin and Wang, 2021; Xie
et al., 2021; Uehara and Sun, 2021; Zhan et al., 2022a). In
the context of RLHF, it is also crucial to develop algorithms
that work under the partial coverage condition.

Despite its significance, there are very few algorithms specif-
ically designed for offline RLHF with strong statistical guar-
antees. In this work, we provide such algorithms and guaran-
tees when preferences depend on unknown reward functions
over trajectories. Notably, we consider general reward func-
tions that can be defined over the whole trajectory rather
than just state-action pairs. This is consistent with many
practical settings in natural language processing. For in-
stance, all benchmarks presented in RL4LM (Ramamurthy
et al., 2022) use metrics defined over the entire trajectories.
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Our main contributions can be summarized as follows:

• We propose a simple algorithm with general function
approximation that consists of two main steps: (1) es-
timate the implicit reward using Maximum Likelihood
Estimation (MLE) with general function approximation
from offline data and (2) solve a distributionally robust
planning problem over a confidence set around the MLE.

• We prove that our algorithm can effectively compete with
a target policy as long as the offline data cover the target
policy. Our analysis leverages a newly defined concentra-
bility coefficient which is tailored to RLHF. As the con-
centrability coefficient differs from that in the standard
RL setting where state-action-wise rewards are directly
observed, we establish lower bounds that highlight the
necessity of our partial coverage condition.

• We extend the algorithm to the setting where the tran-
sition kernel is unknown, where we not only construct
confidence sets for the reward function but also for the
system dynamics. Notably, even though the reward can
be trajectory-wise, we only need to estimate the per-step
transition dynamics to ensure efficient learning.

• We further extend our results to the action-based compari-
son model, where preferences are defined over individual
actions instead of entire trajectories based on the advan-
tage function of the optimal policy (Ramachandran and
Amir, 2007; Zhu et al., 2023). In comparison to the case
of the trajectory-wise comparison model, we can establish
a partial coverage guarantee using a concentrability coeffi-
cient on pairs of state-action pairs rather than trajectories.
In this scenario, our sample complexity only scales with
a bound on the advantage function, which can be much
smaller than a bound on per-trajectory rewards as shown
in Ross et al. (2011); Agarwal et al. (2019).

2 Related Work

Reinforcement learning from human feedback. The
closest work to ours is (Zhu et al., 2023), which also studies
offline RLHF, but their algorithm and analysis are restricted
to linear models. Our algorithm and analysis extend to gen-
eral function approximation. Indeed, general classes such
as neural networks are commonly employed in practice
(Christiano et al., 2017; Abdelkareem et al., 2022). In the
special case of linear rewards and preferences over trajec-
tories, while our algorithms differ, our guarantees recover
theirs. So, our guarantees are more general; see Remark 1.
Moreover, they only consider the setting where the transition
kernel is known, while our work can also handle unknown
transitions. Finally, in the case of action-based preferences,
Zhu et al. (2023) cannot provide guarantees with partial
coverage, even under their restriction to linear models. We
demonstrate how to achieve meaningful guarantees under
partial coverage and a soft margin (Assumption 6).

Wirth et al. (2017) provide a survey of Preference-based
RL (PbRL). PbRL has received considerable attention in
theoretical RL (Yue et al., 2012; Novoseller et al., 2020;
Xu et al., 2020; Pacchiano et al., 2021; Chen et al., 2022)
but the focus is largely on online PbRL. To the best of our
knowledge, Zhu et al. (2023) is the only previous work to
provide theoretical guarantees for offline PbRL.

Offline RL. In offline RL, one of the most critical chal-
lenges is addressing the issue of insufficient coverage in the
offline data. It is well-known that naive methods are unable
to learn the optimal policy in such scenarios (Rashidinejad
et al., 2021b). To tackle this problem, numerous algorithms
have been proposed with theoretical guarantees (Liu et al.,
2020; Kumar et al., 2020; Jin et al., 2021; Rashidinejad et al.,
2021b; Uehara and Sun, 2021; Li et al., 2022b; Shi et al.,
2022; Jin et al., 2020; Xie et al., 2021; Zhan et al., 2022a).
The most relevant work is (Uehara and Sun, 2021), which
focuses on offline model-based RL with general function
approximation. However, their methods cannot be directly
applied to RLHF since per-step rewards are not observable
in our setting. Furthermore, even in the standard RL setting,
the construction of confidence intervals differs between our
approach and theirs. Another related paper is Cheng et al.
(2022), which considers the general offline pessimistic RL
framework in the standard setting and also subtracts a ref-
erence term in their algorithm, similar to ours. However,
our motivations for such reference terms are quite different
from theirs. Additional detailed comparisons are given in
Section 4.1 and Remark 3.

3 Preliminaries

We first introduce our offline RLHF setting with general
function approximation.

Markov decision processes. We consider an episodic
time-inhomogeneous Markov Decision Process (MDP) de-
noted by M, which consists of a state space S, an ac-
tion space A, an initial state distribution P ?0 ∈ ∆S , and
a horizon H ∈ N+. At each step h ∈ [H − 1], we
use P ?h : S × A → ∆S to denote the ground truth
transitions. The ground truth reward function for the en-
tire trajectory is denoted by r? : T → [0, rmax], where
T = (S × A)H represents the set of all possible trajecto-
ries. Note that r? is a trajectory-wise reward, which is more
general than state-action-wise rewards commonly consid-
ered in standard RL, which is the special case where for
some {r?h}Hh=1 we have r?(τ) =

∑H
h=1 r

?
h(sh, ah) for a

trajectory τ = (s1, a1, · · · , sH , aH).

A history-dependent policy π := {πh}Hh=1 is characterized
by πh : (S ×A)h−1×S → ∆A, specifying the probability
of selecting actions for the agent at each step h ∈ [H] based
on the entire history. We denote the set of all such history-
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dependent policies as Πhis. Given a policy π, we define
its expected reward with respect to a general reward func-
tion r and initial and transition distributions P = {Ph}H−1

h=0

as J(π; r, P ) := Eτ∼(π,P )[r(τ)]. Here, Eτ∼(π,P )[·] repre-
sents the expectation over the trajectory distribution when
executing the policy π under the transition P starting from
P0. We use Eτ∼π[·] or Eπ[·] to denote the special case when
P is the ground truth distribution P ? := {P ?h}

H−1
h=0 .

The optimal policy, denoted π?, is the policy that
maximizes the expected reward with respect to
the true reward r? and system dynamics P ?, i.e.,
π? := arg maxπ∈Πhis

J(π; r?, P ?). As the true reward
function r? is dependent on the entire trajectory, the optimal
policy π? is generally history-dependent. Thus, designing
offline RLHF algorithms that can learn history-dependent
policies is crucial.

For any policy π, we can define its state-action visitation
measure as follows: dπh(s, a) = Pπ,P?(sh = s, ah =
a),∀h ∈ [H], where Pπ,P?(·) denotes the distribution of
the trajectory when executing policy π in P ?. We will also
use dπ(τ) to denote Pπ,P?(τ) for the whole trajectory τ .

A policy is Markovian if at each step it depends solely on
the current state. When the reward is state-action-wise and
the policy is Markovian, we can define the associated V-
and Q-functions as V πh (s) = Eπ[

∑H
t=h r

?
t (st, at)|sh =

s],∀h ∈ [H], Qπh(s, a) = Eπ[
∑H
t=h r

?
t (st, at)|sh =

s, ah = a], ∀h ∈ [H]. It is well-known that when
the reward is state-action-wise, the optimal policy π? is
both Markovian and deterministic. Furthermore, we have
V π

?

h (s) = supπ V
π
h (s) and Qπ

?

h (s, a) = supπ Q
π
h(s, a) for

all h ∈ [H]. For brevity, we will use V ? and Q? to repre-
sent the optimal state-value function and Q-function, respec-
tively. The advantage function of the optimal policy, denoted
by A?, is defined to be A?h(s, a) = Q?h(s, a) − V ?h (s) for
all h ∈ [H], s ∈ S, A ∈ A.

Offline reinforcement learning with human feedback.
We focus on the problem of offline RLHF in this work.
Specifically, in the trajectory-based pairwise comparison
setting, we are provided with an offline dataset D =
{τn,0, τn,1, on}Nn=1, where τn,0 = {sn,0h , an,0h }Hh=1 and
τn,1 = {sn,1h , an,1h }Hh=1 are i.i.d. sampled from the distri-
butions µ0 and µ1, respectively, and on ∈ {0, 1} indicates
preference for τn,1 over τn,2. We assume it satisfies the
following preference model:

Assumption 1 (Preference-based model). Given a pair of
trajectories (τ0, τ1), o ∈ {0, 1} satisfies

P (o = 1 | τ0, τ1) = P (τ1 is preferred over τ0 | τ0, τ1)

= Φ(r?(τ1)− r?(τ0)).

where Φ : R → [0, 1] is a monotonically increasing link
function.

A commonly used link function is the sigmoid function
σ(x) = 1/{1 + exp(−x)}, leading to the Bradley-Terry-
Luce (BTL) model (Christiano et al., 2017).

The objective of offline RLHF is to learn a high-quality
policy π̂ ∈ Πhis, i.e., with J(πtar; r

?, P ?)−J(π̂; r?, P ?) ≤
ε where πtar is a target policy we want to compete with
(potentially π?).

General function approximation. In our paper, we esti-
mate the reward r? with general function approximation.
We introduce a function class Gr, such as linear functions or
neural networks, to approximate the true reward. For each
r ∈ Gr and trajectory pair (τ0, τ1), we denote the induced
preference model with respect to r as Pr(o|τ0, τ1), defined
as

Pr(o = 1 | τ0, τ1) := Φ(r(τ1)− r(τ0)). (1)

We use bracketing numbers to measure the complexity of
{Pr : r ∈ Gr}.
Definition 1 (ε-bracketing number of preferences). We say
(g1, g2) is an ε-bracket if g1(· | τ0, τ1) ≤ g2(· | τ0, τ1) and
‖g1(· | τ0, τ1)−g2(· | τ0, τ1)‖1 ≤ ε for all trajectory-pairs
(τ0, τ1). The ε-bracketing number of Gr, denoted byNGr (ε),
is the minimal number of ε-brackets (gn,1, gn,2)Nn=1 needed
so that for any r ∈ Gr there is a bracket i ∈ [N ] containing
it, meaning gi,1(·|τ0, τ1) ≤ Pr(·|τ0, τ1) ≤ gi,2(·|τ0, τ1)
for all trajectory-pairs (τ0, τ1).

The ε-bracket number is widely used in statistics (van de
Geer, 2000) to study MLE and related M-estimates. One
example for which we can bound the ε-bracket number is
linear rewards under the BTL model (Pacchiano et al., 2021;
Zhu et al., 2023).

Proposition 1. Suppose ‖φ(τ)‖2 ≤ R ∀τ ∈ T , Gr ⊆
{τ 7→ 〈φ(τ), θ〉 : ‖θ‖2 ≤ B} for some featurization φ :
T → Rd and B > 0, and the link function is Φ(·) = σ(·).
Then for any ε ≤ 1, logNGr (ε) ≤ O(d log BR

ε ).

The proof is deferred to Appendix A. To handle unknown
transitions, we similarly use function classes {GPh}

H−1
h=0 to

approximate the transition probabilities {P ?h}
H−1
0=1 . Simi-

larly, we use NGPh (ε) to denote the ε-bracket number of
GPh . The formal definition is deferred to Appendix D.

4 Trajectory-Based Pairwise-Comparison
with Known Transition

In this section, we present our algorithm and analyze
the sample complexity for the trajectory-based pairwise-
comparison setting when the ground truth transition P ? is
known. In Sections 5 and 6, we will further explore the
unknown transition setting and the action-based comparison
setting.
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4.1 Algorithm

Our proposed algorithm, FREEHAND described in Algo-
rithm 1, consists of the following two steps.

Confidence set construction via MLE. We construct a
confidence set for the ground truth reward from the implicit
preference feedback. We achieve this by selecting reward
models that nearly maximize the log-likelihood of observed
data up to a slackness parameter ζ. We will show that the
result,R(D), approximates the following confidence set:

R′(D) := {r ∈ Gr :Eτ0∼µ0,τ1∼µ1
[|{r(τ1)− r(τ0)}

− {r∗(τ1)− r∗(τ0)}|2] ≤ ξ}

for a certain ξ. Here the distance between r and r? is mea-
sured using the total variation distance (i.e., `1 norm) of
r(τ1)− r(τ0) and r∗(τ1)− r∗(τ0) over the offline data.

Distributionally robust policy optimization. After con-
structing the confidence set, we search for the policy that
maximizes the policy value under the least favorable re-
ward model, the r ∈ R(D) minimizing the policy value
J(π; r, P ∗) minus Eτ∼µref

[r(τ)], where µref is an arbitrary
known reference trajectory distribution. It is generally
recommended to set µref to µ1, as we will explain later,
possibly a sample-average approximation thereof based on
{τ1,1, . . . , τN,1}. By selecting the least favorable reward
model instead of the MLE solution r̂, we penalize policies
that are not well-covered by the offline data. The need for a
reference policy arises because the approximated confidence
set measures the uncertainty for reward difference between
two trajectories (r(τ1)− r(τ0)), but it cannot measure the
uncertainty of the reward of a single trajectory.

In the following, we compare our algorithm to existing
works. (Zhu et al., 2023) consider a pessimistic offline RL
algorithm for RLHF specialized to the linear reward class
setting, while our FREEHAND can handle general function
approximation. Specifically, they construct the confidence
set using the feature-covariance-rotated `2-ball around the
MLE θ̂, where r̂(τ) = 〈φ(τ), θ̂〉. In contrast, our confidence
set is obtained directly from the log-likelihood objective and
is generic. Uehara and Sun (2021) proposes a model-based
pessimistic offline RL algorithm when we have access to
rewards. The confidence set construction correspondingly
differs significantly. Cheng et al. (2022) considers a general
offline pessimistic RL framework. In their policy optimiza-
tion step, they also subtract the value of a reference policy.
This similarity is superficial, however, as the motivations
are different. We subtract the value because we can only
measure the difference between rewards of any two trajecto-
ries, while their motivation is to obtain a certain robustness
result (their proposition 3).

Algorithm 1 FREEHAND: oFfline ReinforcemEnt lEarning
with HumAN feeDback

1: Input: offline datset D, slackness parameter ζ, refer-
ence distribution µref , true transition P ?

2: MLE: compute r̂ = argmaxr∈Gr
∑N
n=1 logPr(o =

on | τn,1, τn,0)
3: Confidence set construction: construct R(D) ={

r ∈ Gr :
∑N
n=1 logPr(o = on | τn,0, τn,1) ≥∑N

n=1 logPr̂(o = on | τn,0, τn,1)− ζ
}

.
4: Distributionally robust planning: return

π̂ = argmaxπ∈Πhis
minr∈R(D) (J(π; r, P ?)− Eτ∼µref

[r(τ)]) .

4.2 Analysis

To analyze the sample complexity of FREEHAND, we first
quantify the discrepancy between the offline data D and the
distribution induced by the target policy πtar.

Definition 2 (concentrability coefficient for prefer-
ence-based feedback). The concentrability coefficient w.r.t.
a reward class Gr, a target policy πtar, and a reference
policy µref is defined as

Cr(Gr, πtar, µref) := max

{
0,

sup
r∈Gr

Eτ0∼πtar,τ1∼µref
[r?(τ0)− r?(τ1)− r(τ0) + r(τ1)]√

Eτ0∼µ0,τ1∼µ1

[
|r?(τ0)− r?(τ1)− r(τ0) + r(τ1)|2

]
}
.

Note, when we choose µref = µ1, by Jensen’s inequal-
ity, the value of Cr(Gr, πtar, µ1) can always be upper
bounded by the per-trajectory concentration coefficient:
Cr(Gr, πtar, µ1) ≤

√
Ctr for any Gr, where Ctr :=

maxτ∈T
dπtar (τ)
µ0(τ) . Moreover, while Cr(Gr, πtar, µ1) be-

comes
√
Ctr in the worst case (e.g., when Gr is the set of all

functions mapping from T to R), it can generally be much
smaller. For example, when using linear models, it is a rela-
tive condition number, as explained in Appendix C. Finally,
when µref = dπtar , our coefficient becomes 0. This implies
that Cr(Gr, πtar, µ1) could be small when πtar and µref are
close. While the concept of concentrability coefficient has
been used in offline RL with explicit reward feedback (Chen
and Jiang, 2019b; Song et al., 2022), this property is unique
when the feedback is in the form of preferences.

In our following PAC analysis, we further assume the reward
class Gr is realizable and bounded.

Assumption 2 (Realizability). We have r? ∈ Gr.
Assumption 3 (Boundedness). We have 0 ≤ r(τ) ≤ rmax

for all r ∈ Gr and τ ∈ T .
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Theorem 1. For any δ ∈ (0, 1], let ζ =
cMLE log(NGr (1/N)/δ) where cMLE > 0 is a uni-
versal constant, then under Assumption 1,2 and 3, with
probability 1− δ, we have

J(πtar; r
?, P ?)− J(π̂; r?, P ?)

≤
√
cC2

r (Gr, πtar, µref)κ2 log(NGr (1/N)/δ)

N
, (2)

where c > 0 is a universal constant and κ =
(infx∈[−rmax,rmax] Φ′(x))−1.

Theorem 1 indicates that FREEHAND can learn an ε-optimal
policy compared to πtar with a sample complexity of

N = Õ
(
C2
r (Gr, πtar, µref)κ

2 log(NGr (1/N)/δ)

ε2

)
.

Next we provide a detailed explanation of this sample com-
plexity. Firstly, Cr(Gr, πtar, µref) represents the extent to
which the dataset D covers the target policy πtar. In our
theorem, to obtain a non-vacuous PAC guarantee, we only
require the dataset D to cover the target policy πtar (i.e.,
Cr(Gr, πtar, µref) < ∞). The distributionally robust opti-
mization step plays a crucial role in obtaining this guarantee
under partial coverage. In particular, invoking the above-
mentioned third property ofCr(Gr, πtar, µref), when setting
πtar = µref , (2) is reduced to

J(µref ; r
?, P ?) ≤ J(π̂; r?, P ?) (3)

This encourages us to choose µref = µ1 (or µ0) as it will
allow us to ensure our performance is at least larger than the
performance associated with the offline data.

Secondly, log(NGr (1/N)) measures the complexity of the
function class Gr. For example, when using linear models,
it takes Õ(d). We refer the reader to van de Geer (2000) for
bracketing number computations for more general classes.
Thirdly, κ represents the non-linearity of the link function
Φ, which determines the difficulty of estimating the reward
from human preferences. This dependence on κ is present in
the existing literature of RLHF, both in online settings (Pac-
chiano et al., 2021; Chen et al., 2022) and offline settings
(Zhu et al., 2023).

Remark 1 (Comparison to Zhu et al. (2023)). By specializ-
ing our result to the linear model, we recover the result in
Zhu et al. (2023). Specifically, the bracketing number is cal-
culated in Proposition 1, and Cr(Gr, πtar, µref) is reduced
to a relative condition number. The details are deferred to
Appendix C.

Remark 2. In practice, to compute Eτ∼µ1
[r(τ)] in the sec-

ond step, we can use the sample average, with an additional
cost of

√
log(1/δ)/N in the suboptimality bound in Eq. (2).

4.3 Discussion of the Concentrability Coefficient

In the worst-case scenario (i.e., Gr is the set of all functions
mapping from T to R), the value of Cr(Gr, πtar, µ1) is re-
duced to to the per-trajectory concentrability coefficient Ctr.
The per-trajectory concentrability coefficient is generally
larger than the per-step concentrability coefficient Cst com-
monly used in the general offline RL literature. Specifically,
Cst is defined as

Cst := max
s,a,h

dπtar

h (s, a)/µ0,h(s, a),

where µ0,h(s, a) represents the marginal distribution at step
h. In this section, we show the dependence on the per-
trajectory concentrability coefficient is necessary for our
offline RLHF context. This is intuitively because our RLHF
setting involves reward functions defined over trajectories,
reflecting the fact that human feedback is also trajectory-
based.

In the next proposition, we first show that the per-trajectory
concentrability coefficient Ctr can be exponentially larger
than the per-step concentrability coefficient Cst.

Proposition 2. For any S ≥ 1, A ≥ 2, H ≥ 1, C ≥ 1,
there exists an MDPM with horizon H , a policy πtar and
a data distribution µ0 such that |S| = S, |A| = A and
Cst = C while Ctr = CH .

Proposition 2 indicates that Ctr can be significantly larger
than Cst. A natural question arises as to whether we can
obtain suboptimality guarantees using Cst. Unfortunately,
the following lower bounds reveal that the suboptimality
can scale with CH−1

st in the worst case:

Theorem 2. Set πtar = π?. Then, for any C > 1 and
H ≥ 1, there exists a dataset distribution µ1 such that we
have

inf
π̂

sup
(M,µ0)∈Θst(C)

ED[J(π?; r?, P ?)− J(π̂; r?, P ?)]

& min

{
C − 1,

√
(max{C, 2})H−1(C − 1)

N

}
,

where π̂ is any mesurable function of the dataD (and knows
the information of µ1). Θst(C) is the set of all MDP, offline
distribution (M, µ0) such that Cst ≤ C. Note ED is taken
with respect to the randomness in D.

In addition, with similar hard instances constrcuted in The-
orem 2, we can show that scaling with Ctr is necessary in
our setting:

Theorem 3. Set πtar = π?. Then for any C > 1 and
H ≥ 1, there exists a dataset distribution µ1 such that we
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have

inf
π̂

sup
(M,µ0)∈Θtr(C)

ED[J(π?; r?, P ?)− J(π̂; r?, P ?)]

& min

{
C − 1,

√
C − 1

N

}
,

where π̂ is any mesurable function of the dataD (and knows
the information of µ1). Θtr is the set of all MDP, offline
distribution (M, µ0) such that Ctr ≤ C. Note ED is taken
with respect to the randomness in D.

Note that when µ1 is known, we can set µref = µ1 in Algo-
rithm 1 and then Cr(Gr, πtar, µ1) ≤

√
Ctr, which implies

the sample complexity in Theorem 1 indeed nearly matches
this lower bound with respect to Ctr and N when N is
sufficiently large.

In summary, Theorem 2 and Theorem 3 imply that the scal-
ing with the per-trajectory concentrability coefficient is es-
sential in the trajectory-based pairwise-comparison setting,
and it cannot be relaxed to the per-step concentrability with-
out additional assumptions, such as on the reward structure.

5 Trajectory-Based Comparison with
Unknown Transition

We extend the setting presented in Section 4 to the scenario
where the transition function P ? is unknown. The algorithm
is described in Algorithm 2. Compared to Algorithm 1, we
simply added a similar step to handle unknown transitions.
Hereafter, we use the convention P0(· | s, a) := P0(·).

Our sample complexity will depend on the following addi-
tional concentration coefficient:

Definition 3 (Concentrability coefficient for the transition).
The concentrability coefficient w.r.t. transition classes
{GPh} and a target policy πtar is defined as

CP ({GPh}, πtar) := max
h:0≤h≤H−1

sup
Ph∈GPh

E(s,a)∼dπtarh
[‖Ph(· | s, a)− P ?h (· | s, a)‖1]√

E(s,a)∼(µ0,h/2+µ1,h/2)[‖Ph(· | s, a)− P ?h (· | s, a)‖21]
.

Note this is always upper-bounded by the density-ratio-
based concentrability coefficient, CP ({GPh}, πtar) ≤
sup(s,a,h)∈S×A×[H]

d
πtar
h (s,a)

µ0,h(s,a)/2+µ1,h(s,a)/2 .

We also assume the transition classes {GPh}
H−1
h=0 are realiz-

able:

Assumption 4 (Realizability). Suppose that we have P ?h ∈
GPh for all h where 0 ≤ h ≤ H − 1. In addition, any
choice Ph ∈ GPh for 0 ≤ h ≤ H − 1 are valid transition
distributions.

Algorithm 2 FREEHAND-transition
Input: offline dataset D, slackness parameter ζ, ζPh , ref-
erence distribution µref

MLE for reward: compute
r̂ = argmaxr∈Gr

∑N
n=1 logPr(o = on|τn,1, τn,0).

MLE for transition: compute
P̂h = argmaxPh∈GPh

∑N
n=1

∑1
i=0 logPh(sn,ih+1|s

n,i
h , an,ih ).

Confidence set construction: for 0 ≤ h ≤ H − 1, con-
struct

R(D) =

{
r ∈ Gr :

∑N
n=1 logPr(o = on|τn,0, τn,1) ≥∑N

n=1 logPr̂(o = on|τn,0, τn,1)− ζ
}

,

Ph(D) ={
Ph ∈ GPh :

∑N
n=1

∑1
i=0 logPh(sn,ih+1|s

n,i
h , an,ih )

≥
∑N
n=1

∑1
i=0 log P̂h(sn,ih+1|s

n,i
h , an,ih )− ζPh

}
.

Distributionally robust plnanning: return π̂ =

argmaxπ∈Πhis
minr∈R(D),Ph∈Ph(D) J

(
π; r, {Ph}H−1

h=0 )
)
−

Eτ∼µref
[r(τ)].

Then with the above assumptions, we have the following
theorem to characterize the sample complexity when the
transition is unknown:

Theorem 4. For any δ ∈ (0, 1], let ζ =
cMLE log(NGr (1/N)/δ),ζPh = cP log(HNGPh (1/N)/δ)
where cMLE, cP > 0 are universal constants, then under
Assumption 1,2,3 and 4, we have

J(πtar; r
?, P ?)− J(π̂; r?, P ?)

≤
√
cC2

r (Gr, πtar, µref)κ2 log(NGr (1/N)/δ)

N

+Hrmax

√
cC2

P ({GPh}, πtar) log(HNP (1/N)/δ)

N
,

where c > 0 and κ are the same as Theorem 1 and NP :=
max0≤h≤H−1NGPh .

Compared to Theorem 1, we introduce an additional term
in our guarantee to account for the unknown transitions.
Once again, our result demonstrates that the learned policy
can achieve performance comparable to any target policy
πtar covered by the offline data, i.e., Cr(Gr, πtar, µref) <
∞, CP ({GPh}, πtar) <∞.

Remark 3 (Comparison to Uehara and Sun (2021) ). Like
us, Uehara and Sun (2021) proposed a model-based RL
algorithm that works under partial coverage, but in the
standard RL setting and with a known state-action-wise
reward function. In addition to the difference in settings,
which is the primary difference, our approach moreover
differs from their approach because while they construct
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confidence intervals by defining a confidence ball around
the MLE solution based on the total variation distance,
we use the Kullback-Leibler (KL) distance. This may be
preferable as computing the KL distance is generally easier
than the total variation distance as it arises directly from the
MLE objective, as practically done in Rigter et al. (2022).

6 Action-Based Comparison

Next, we turn our attention to the action-based comparison
setting (Ramachandran and Amir, 2007; Zhu et al., 2023),
where human evaluators provide preferences between pairs
of actions instead of pairs of trajectories. In this section,
we assume that the reward function r? is state-action-wise:
r?(τ) =

∑H
h=1 r

?
h(sh, ah) for τ = (s1, a1, · · · , sH , aH).

And, we consider a preference model based on Q?.

Setting. We have datasets D = {Dh}Hh=1 with Dh =

{(snh, a
n,0
h , an,1h , onh)}Nn=1 for each h ∈ [H], where each

sample is drawn i.i.d. from the distribution snh ∼ µh, a
n,0
h ∼

µ0,h(· | snh), an,1h ∼ µ1,h(· | snh) and onh ∈ {0, 1} indicates
preference for a1,n

h over a0,n
h in the state snh . We assume it

satisfies the following preference model:

Assumption 5 (Action-based comparison model). Given a
pair of actions a0

h, a
1
h and state sh, o ∈ {0, 1} satisfies

P (oh = 1 | sh, a0
h, a

1
h) = Φ(Q?h(sh, a

1
h)−Q?h(sh, a

0
h)).

Here, the aforementioned distribution can be equiva-
lently expressed as P (onh = 1 | snh, a

n,0
h , an,1h ) =

Φ(A?h(snh, a
n,1
h )−A?h(snh, a

n,0
h )), where A? denotes the op-

timal advantage function. Consequently, we introduce gen-
eral function classes GAh to estimate the optimal advan-
tage function A?h. In addition, for each Ah ∈ GAh and
(s, a0, a1) ∈ S ×A×A, we use PAh(· | s, a0, a1) to repre-
sent the human preference model with respect toAh, defined
as PAh(o = 1 | s, a0, a1) := Φ(Ah(s, a1)−Ah(s, a0)).

We again use the ε-bracket number of such advantage func-
tion classes to quantify their complexity, denoted as NGAh .
The full formal definition is provided in Appendix D.

6.1 Algorithm

Our algorithm comprises two steps. In the first step, our
objective is to estimate the optimal advantage function us-
ing MLE. In the second step, we determine the policy by
selecting the action with the highest advantage value based
on the learned advantage function.

6.2 Analysis

Now we show that FREEHAND-action is able to learn a
near-optimal policy as long as offline data covers the optimal

Algorithm 3 FREEHAND-action
1: Input: offline datset D.
2: MLE: compute Âh = argmaxAh∈GAh

∑N
n=1

logPAh(o = onh | snh, a
n,0
h , an,1h ),∀h ∈ [H].

3: Greedy policy: return π̂h(s) = argmaxa∈A Âh(s, a)

policy. Our analysis depends on the following assumption
on the margin of Q?:

Assumption 6 (Soft margin). There exists α0 ∈ R+,
β ∈ (0,∞] such that for all a ∈ A, h ∈ [H], α > 0, we
have Pπ?,P?(0 < |Q?h(sh, π

?(sh)) − Q?h(sh, a)| < α) ≤
(α/α0)β .

The soft margin is widely used in the literature on classifi-
cation, decision making, and RL (Audibert and Tsybakov,
2007; Perchet and Rigollet, 2013; Luedtke and Chambaz,
2020; Hu et al., 2021; 2022; Uehara et al., 2023). Note,
when the optimal Q function satisfies a gap (as in Sim-
chowitz and Jamieson, 2019; Wu et al., 2022), the soft
margin assumption holds with β =∞.

Next, we introduce the concentrability coefficient for the
action-based comparison setting, which is defined as fol-
lows.

Definition 4 (concentrability coefficient for action-based
comparison).

Cact := sup
h∈[H],Ah∈GAh

E(s,a0)∼dπ?h ,a1∼Unif(·|s)[l(Ah, s, a
0, a1)]

Es∼µh,a0∼µ0,h(·|s),a1∼µ1,h(·|s)[l(Ah, s, a0, a1)]
,

where l(Ah, s, a
0, a1) := |A?h(s, a0) − A?h(s, a1) −

Ah(s, a0) + Ah(s, a1)|2 and Unif(· | s) is the uniform
policy over A.

We observe that

Cact ≤
(

sup
h∈[H],s∈S

dπ
?

h (s)

µh(s)

)
·
(

sup
h∈[H],s∈S,a0∈A

π?h(a0 | s)
µ0,h(a0 | s)

)
·
(

1

|A|
sup

h∈[H],s∈S,a1∈A

1

µ1,h(a1 | s)

)
.

Based on this bound, we can consider simple sufficient
conditions for Cact to be finite. Firstly, regarding the first
term, it is sufficient for the dataset distribution µh to cover
the states visited by the optimal policy π?, denoted as dπ

?

h .
Regarding the second term, we require µ0,h to cover π?h.
Additionally, the third term can be upper bounded when µ1,h

can cover the whole action space. This is mild because ∀s ∈

7
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S;µh(s) > 0 is not controllable to the learner; but ∀(s, a) ∈
S × A;µ1,h(a | s) > 0 is controllable to the learner in
the data-collection process. To summarize, Cact < ∞
primarily requires partial coverage over the state space with
respect to the optimal policy, which is preferable in practical
applications where S can be very large.

Additionally, we introduce several assumptions on the func-
tion classes similar to those in Section 4.

Assumption 7. For all h ∈ [H], we have A?h ∈ GAh .

Assumption 8. For all h ∈ [H] and Ah ∈ GAh , we have
|Ah(s, a)| ≤ bmax for all (s, a) ∈ S ×A.

With the aforementioned assumptions, we can establish the
sample complexity of FREEHAND-action.

Theorem 5. Under Assumption 5,6,7 and 8, we have with
probability at least 1− δ that

J(π?; r?, P ?)− J(π̂; r?, P ?) ≤ cH|A|
(

2

β

) β−2
β+2
(

1

α0

) 2β
β+2

·
(
κ2
ACact log(HNGA(1/N)/δ)

N

) β
β+2

,

where NGA := maxh∈[H]NGAh and κA =
1

infx∈[−bmax,bmax] Φ′(x) .

Theorem 5 suggests that FREEHAND-action can learn
a near-optimal policy as long as Cact takes a finite value
under a soft margin. Specifically, when a hard margin is
imposed (i.e., β =∞), FREEHAND-action can learn an
ε-optimal policy with a sample complexity of N = Õ(1/ε),
which is faster than a typical rate Õ(1/ε2). As mentioned
earlier, the quantity Cact represents the extent to which the
distribution induced by the optimal policy is covered by the
offline data. Therefore, there is no need for a potentially
stringent condition that requires the offline data to cover the
entire state space like Zhu et al. (2023).

Furthermore, our guarantee is designed to overcome the
limitations of existing approaches. In Theorem 1, our upper-
bound is influenced by the parameter κ. When using a
common sigmoid link function, this parameter scales with
Θ(exp(rmax)). As a result, in dense reward settings where
rmax scales with H , this scaling factor may lead to an ex-
plicit dependence of Θ(exp(H)). Similar observations have
been made in previous works (Zhu et al., 2023; Pacchiano
et al., 2021; Chen et al., 2022). However, even if rmax scales
with H , it is known that the `∞-norm of the advantage func-
tion, denoted as bmax, can take much smaller values (Ross
et al., 2011; Agarwal et al., 2019) Hence, we can avoid the
explicit dependence on Θ(exp(H)).

7 Conclusions

We propose the first algorithm for RLHF with preferences
over trajectories with general function approximation and
under partial coverage. We establish lower bounds that ex-
plain the differences between our RLHF model and standard
RL with direct reward feedback. Moreover, we extend our
algorithm to unknown transitions and to preference feed-
back over actions, all while maintaining strong guarantees
under partial coverage.
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A Proof of Proposition 1

Let F denote the function class {fr : fr(τ
0, τ1) = Pr(o =

1|τ0, τ1), r ∈ Gr}. Let IF (ε) denote the ε-bracket number
with respect to `∞-norm, i.e., the minimum integer M such
that there exist M functions {f i}Mi=1 such that for each
fr ∈ F , we have supτ0,τ1 |fr(τ0, τ1)−f i(τ0, τ1)| ≤ ε for
some i ∈ [M ]. Then we know there exists a set of function
F with |F| = IF (ε/4) such that for each fr ∈ F , there
exists f ∈ F satisfying

sup
τ0,τ1

|fr(τ0, τ1)− f(τ0, τ1)| ≤ ε/4.

Now we construct a bracket (g1
f
, g2
f
) defined as follows:

g1
f
(o = 1|τ0, τ1) = f(τ0, τ1)− ε/4,

g1
f
(o = 0|τ0, τ1) = 1− f(τ0, τ1)− ε/4,

g2
f
(o = 1|τ0, τ1) = f(τ0, τ1) + ε/4,

g2
f
(o = 0|τ0, τ1) = 1− f(τ0, τ1) + ε/4.

Then clearly we have g1
f
(·|τ0, τ1) ≤ Pr(·|τ0, τ1) ≤

g2
f
(·|τ0, τ1) and ‖g1

f
(·|τ0, τ1) − g2

f
(·|τ0, τ1)‖1 ≤ ε. This

implies that NGr (ε) ≤ IF (ε/4).

Now we only need to bound IF (ε/4). Consider θ and θ′

with ‖θ − θ′‖2 ≤ ε1 and let r (r′) denote the reward 〈φ, θ〉
(〈φ, θ′〉). Then we know for all τ ,

|r(τ)− r′(τ)| ≤ Rε1.

Fix the trajectory pair (τ0, τ1). Without loss of general-
ity, we assume exp(r(τ0)) + exp(r(τ1)) ≤ exp(r′(τ0)) +
exp(r′(τ1)). Then we have

exp(r(τ0)) + exp(r(τ1)) ≤ exp(r′(τ0)) + exp(r′(τ1))

≤ exp(Rε1)
(

exp(r(τ0)) + exp(r(τ1))
)
.

On the other hand, we have

|fr(τ0, τ1)− fr′(τ0, τ1)|

=
1(

exp(r′(τ0)) + exp(r′(τ1))
)

· 1(
exp(r(τ0)) + exp(r(τ1))

)
·
∣∣∣ exp(r(τ1))

(
exp(r′(τ0)) + exp(r′(τ1))

)
− exp(r′(τ1))

(
exp(r(τ0)) + exp(r(τ1))

)∣∣∣.

Therefore, if exp(r(τ1))
(

exp(r′(τ0)) + exp(r′(τ1))
)
−

exp(r′(τ1))
(

exp(r(τ0))+exp(r(τ1))
)
≥ 0, then we have∣∣∣ exp(r(τ1))

(
exp(r′(τ0)) + exp(r′(τ1))

)
− exp(r′(τ1))

(
exp(r(τ0)) + exp(r(τ1))

)∣∣∣
≤ exp(Rε1) exp(r(τ1))

(
exp(r(τ0)) + exp(r(τ1))

)
− exp(−Rε1) exp(r(τ1))

(
exp(r(τ0)) + exp(r(τ1))

)
= (exp(Rε1)− exp(−Rε1)) exp(r(τ1))

·
(

exp(r(τ0)) + exp(r(τ1))
)
.

Otherwise, we have∣∣∣ exp(r(τ1))
(

exp(r′(τ0)) + exp(r′(τ1))
)

− exp(r′(τ1))
(

exp(r(τ0)) + exp(r(τ1))
)∣∣∣

≤ exp(Rε1) exp(r(τ1))
(

exp(r(τ0)) + exp(r(τ1))
)

− exp(r(τ1))
(

exp(r(τ0)) + exp(r(τ1))
)

= (exp(Rε1)− 1) exp(r(τ1))
(

exp(r(τ0)) + exp(r(τ1))
)
.

Therefore we have

|fr(τ0, τ1)− fr′(τ0, τ1)|

≤
(exp(Rε1)− exp(−Rε1)) exp(r(τ1))

(
exp(r(τ0)) + exp(r(τ1))

)
(

exp(r′(τ0)) + exp(r′(τ1))
)(

exp(r(τ0)) + exp(r(τ1))
)

≤ exp(2Rε1)− 1.

This implies that for any ε ≤ 1,

log IF (ε/4) ≤ log Id,B
(2 ln 2

R
ε
)
≤ O

(
d log

BR

ε

)
,

where Id,B(·) is the covering number of a d-dimensional
ball centered at the origin with radius B with respect to
`2-norm and the last step is from (Wainwright, 2019). This
concludes our proof.

B Proof of Theorem 1

The proof of Theorem 1 consists of two steps, deriving
the guarantee of MLE and analyzing the performance of
pessimistic offline RL.

Step 1: MLE guarantee. We first need to show that the
confidence setR(D) contains the true reward r? with high
probability. This can be proved via the following lemma
which characterizes the guarantee of MLE:

11
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Lemma 1 (Performance of MLE). Fix any δ ∈ (0, 1]. Then
with probability at least 1− δ/2 we have that for all reward
function r ∈ Gr,
N∑
n=1

log

(
Pr(o

n|τn,0, τn,1)

Pr?(on|τn,0, τn,1)

)
≤ cMLE log(NGr (1/N)/δ),

where cMLE > 0 is a universal constant.

We defer the proof to Appendix B.1. Denote the event in
Lemma 1 by E1, then we know P(E1) ≥ 1 − δ/2. Under
the event E1, we have

N∑
n=1

logPr?(on|τn,0, τn,1)

≥
N∑
n=1

logPr̂(o
n|τn,0, τn,1)− cMLE log(NGr (1/N)/δ),

which implies that r? ∈ R(D) since we know r? ∈ Gr from
Assumption 2.

Nevertheless, the confidence set R(D) is constructed via
loglikelihood and we indeed prefer a bound on the total
variation (TV) distance between Pr and Pr? where r ∈
R(D) to facilitate our subsequent analysis. We can obtain
such a bound as shown in the following lemma from the
literature ((Liu et al., 2022)[Proposition 14],(Zhan et al.,
2022b)[Lemma 9]):
Lemma 2. With probability at least 1 − δ/2, we have for
all reward function r ∈ Gr that

Eτ0∼µ0,τ1∼µ1

[∥∥∥Pr(·|τ0, τ1)− Pr?(·|τ0, τ1)
∥∥∥2

1

]
≤ cTV

N

( N∑
n=1

log

(
Pr?(on|τn,0, τn,1)

Pr(on|τn,0, τn,1)

)
+ log(NGr (1/N)/δ)

)
,

where cTV > 0 is a universal constant.

Denote the event in Lemma 2 by E2 and then we know
P(E2) ≥ 1 − δ/2. Then from Lemma 1 and Lemma 2 we
know that under event E1 ∩ E2, we have for all r ∈ R(D):

Eτ0∼µ0,τ1∼µ1

[∥∥∥Pr(·|τ0, τ1)− Pr?(·|τ0, τ1)
∥∥∥2

1

]
≤ c log(NGr (1/N)/δ)

N
, (4)

where c > 0 is a universal constant.

Then under Assumption 3, we can apply the mean value
theorem between r?(τ1)− r?(τ0) and r(τ1)− r(τ0) to (4)
and ensure for all r ∈ R(D) that

Eτ0∼µ0,τ1∼µ1
[|(r?(τ1)− r?(τ0))− (r(τ1)− r(τ0))|2]

≤ cκ2 log(NGr (1/N)/δ)

N
, (5)

where κ := 1
infx∈[−rmax,rmax] Φ′(x) measures the non-

linearity of the link function Φ.

Step 2: Pessimistic offline RL. Let rinf
π denote

argminr∈R(D) J(π; r, P ?) − Eτ∼µref
[r(τ)]. Then we can

bound the suboptimality of π̂ as follows:

J(πtar; r
?, P ?)− J(π̂; r?, P ?)

=
(
J(πtar; r

?, P ?)− Eτ∼µref
[r?(τ)]

)
−
(
J(π̂; r?, P ?)− Eτ∼µref

[r?(τ)]
)

≤
((
J(πtar; r

?, P ?)− Eτ∼µref
[r?(τ)]

)
−
(
J(πtar; r

inf
πtar

, P ?)− Eτ∼µref
[rinf
πtar

(τ)]
))

−
((
J(π̂; r?, P ?)− Eτ∼µref

[r?(τ)]
)

−
(
J(π̂; rinf

π̂ , P ?)− Eτ∼µref
[rinf
π̂ (τ)]

))
≤
(
J(πtar; r

?, P ?)− Eτ∼µref
[r?(τ)]

)
−
(
J(πtar; r

inf
πtar

, P ?)− Eτ∼µref
[rinf
πtar

(τ)]
)

=Eτ0∼πtar,τ1∼µref
[(r?(τ0)− r?(τ1))

− (rinf
πtar

(τ0)− rinf
πtar

(τ1))]

≤Cr(Gr, πtar, µref)

·
√

Eτ0∼µ0,τ1∼µ1
[|r?(τ0)− r?(τ1)− rinf

πtar
(τ0) + rinf

πtar
(τ1)|2]

≤
√
cC2

r (Gr, πtar, µref)κ2 log(NGr (1/N)/δ)

N
,

where the second step is due to π̂ =
argmaxπ∈Πhis

minr∈R(D) J(π; r, P ?) − Eτ∼µref
[r(τ)],

the third step is due to rinf
π̂ = argminr∈R(D) J(π̂; r, P ?)−

Eτ∼µref
[r(τ)], the fifth step comes from the definition of

Cr(Gr, πtar, µref) (Definition 2) and the last step leverages
(5). This concludes our proof.

B.1 Proof of Lemma 1

The proof largely follows (Zhan et al., 2022b). Suppose
F is a 1/N -bracket of Gr with |F| = NGr (1/N) and we
denote the set of all right brackets in F by F̃ , i.e., F̃ :=
{f : ∃f ′, such that [f ′, f ] ∈ F}. Then fix any f ∈ F̃ , we
have:

E
[

exp

( N∑
n=1

log

(
f(on|τn,0, τn,1)

Pr?(on|τn,0, τn,1)

))]

=

N∏
n=1

E
[

exp

(
log

(
f(on|τn,0, τn,1)

Pr?(on|τn,0, τn,1)

))]

=

N∏
n=1

E
[
f(on|τn,0, τn,1)

Pr?(on|τn,0, τn,1)

]

12
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=

N∏
n=1

E
[∑

o

f(o|τn,0, τn,1)

]
≤
(

1 +
1

N

)N
≤ e,

where the first step is due to each sample in D is i.i.d., the
third step uses Tower property and the fourth step is from
the fact that F is a minimum 1/N -bracket.

Then by Markov’s inequality we have for any δ ∈ (0, 1],

P
( N∑
n=1

log

(
f(on|τn,0, τn,1)

Pr?(on|τn,0, τn,1)

)
> log(1/δ)

)

≤ E
[

exp

( N∑
n=1

log

(
f(on|τn,0, τn,1)

Pr?(on|τn,0, τn,1)

))]
· exp[− log(1/δ)]

≤ eδ.

By union bound, we have for all f ∈ F̃ ,

P
( N∑
n=1

log

(
f(on|τn,0, τn,1)

Pr?(on|τn,0, τn,1)

)
> cMLE log(NGr (1/N)/δ)

)
≤ δ/2,

where cMLE > 0 is a universal constant.

Therefore from the definition of 1/N -bracket net, we know
for all r ∈ Gr, there exists f ∈ F̃ such that Pr(·|τ0, τ1) ≤
f(·|τ0, τ1) for any trajectories (τ0, τ1). This implies that
for all r ∈ Gr,

P
( N∑
n=1

log

(
Pr(o

n|τn,0, τn,1)

Pr?(on|τn,0, τn,1)

)
> cMLE log(NGr (1/N)/δ)

)
≤ δ/2.

This concludes our proof.

C Comparison with (Zhu et al., 2023)

(Zhu et al., 2023) considers the linear reward setting un-
der BTL model and they can achieve the following sample
complexity:

N = O
(
C2

lin exp(4BR)d log(1/δ)

ε2

)
,

where R and B are the norm bounds on the feature vectors
φ and parameter θ (defined in Proposition 1).The concentra-
bility coefficient Clin is defined as

Clin := ‖Eτ0∼πtar,τ1∼µref
[φ(τ0)− φ(τ1)]‖Σ−1

D
,

and ΣD is the empirical covariance matrix of the dataset
1
N

∑N
n=1(φ(τn,0)− φ(τn,1))(φ(τn,0)− φ(τn,1))>.

Note that all the analysis and proofs in this paper still hold
when we define the concentrability coefficient as

C ′r(Gr, πtar, µref) := max

{
0,

sup
r∈Gr

Eτ0∼πtar,τ1∼µref
[r?(τ0)− r?(τ1)− r(τ0) + r(τ1)]√

1
N

∑N
n=1 |r?(τn,0)− r?(τn,1)− r(τn,0) + r(τn,1)|2

}
.

Then when specializing the result in Theorem 1 to the lin-
ear reward setting under BTL model with this version of
concentrability coefficient, the sample complexity is

N = Õ
(

(C ′r(Gr, πtar, µref))
2 exp(2rmax)d log(BR/δ)

ε2

)
.

We know that BR ≥ rmax. In addition, note that in this
case, we have Clin ≥ 0 and for any r ∈ Gr,∣∣Eτ0∼πtar,τ1∼µref

[r?(τ0)− r?(τ1)− r(τ0) + r(τ1)]
∣∣

=
∣∣〈Eτ0∼πtar,τ1∼µref

[φ(τ0)− φ(τ1)], θ? − θ〉
∣∣

≤‖Eτ0∼πtar,τ1∼µref
[φ(τ0)− φ(τ1)]‖Σ−1

D
· ‖θ? − θ‖ΣD

=‖Eτ0∼πtar,τ1∼µref
[φ(τ0)− φ(τ1)]‖Σ−1

D

·

√√√√ 1

N

N∑
n=1

|r?(τn,0)− r?(τn,1)− r(τn,0) + r(τn,1)|2,

where we suppose r?(τ) = 〈φ(τ), θ?〉 and r(τ) =
〈φ(τ), θ〉. Therefore we have

C ′r(Gr, πtar, µref) ≤ Clin.

This implies that Theorem 1 can recover the sample com-
plexity for linear reward setting under BTL model in (Zhu
et al., 2023) with only some additional log factors.

D Omitted Details

In this section we supplement the definition of bracket num-
ber for the transition class and advantage function class.

Definition 5 (ε-bracket number of transition proba-
bility classes). Suppose f1, f2 is a function with
f1(·|s, a), f2(·|s, a) ∈ R|S| for all (s, a) ∈ S × A. Then
we say (f1, f2) is a ε-bracket if f1(·|s, a) ≤ f2(·|s, a)
and ‖f1(·|s, a) − f2(·|s, a)‖1 ≤ ε for all (s, a). The ε-
bracket number of a transition probability class GPh where
h ∈ [H − 1] is the minimum integer N satisfying that there
exist N ε-brackets (fn,1, fn,2)Nn=1 such that for any func-
tion Ph ∈ GPh there is a bracket (f i,1, f i,2) where i ∈ [N ]
containing it, i.e., f i,1(·|s, a) ≤ Ph(·|s, a) ≤ f i,2(·|s, a)
for all (s, a).

Definition 6 (ε-bracket number of initial state distribution
classes). Suppose f1, f2 ∈ R|S|. Then we say (f1, f2)
is a ε-bracket if f1 ≤ f2 and ‖f1 − f2‖1 ≤ ε. The

13
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ε-bracket number of a initial state distribution class GP0

is the minimum integer N satisfying that there exist N ε-
brackets (fn,1, fn,2)Nn=1 such that for any P0 ∈ GP0 there
is a bracket (f i,1, f i,2) where i ∈ [N ] containing it, i.e.,
f i,1 ≤ P0 ≤ f i,2.

Definition 7 (ε-bracket number of advantage
function classes). Suppose g1, g2 is a function
with g1(·|s, a0, a1), g2(·|s, a0, a1) ∈ R2 for all
(s, a0, a1) ∈ S × A × A. Then we say (g1, g2)
is a ε-bracket if g1(·|s, a0, a1) ≤ g2(·|s, a0, a1)
and ‖g1(·|s, a0, a1) − g2(·|s, a0, a1)‖1 ≤ ε for all
(s, a0, a1) ∈ S × A × A. The ε-bracket number of
a reward class GAh where h ∈ [H] is the minimum
integer N satisfying that there exist N ε-brackets
(gn,1, gn,2)Nn=1 such that for any function Ah ∈ GAh there
is a bracket (gi,1, gi,2) where i ∈ [N ] containing it, i.e.,
gi,1(·|s, a0, a1) ≤ PAh(·|s, a0, a1) ≤ gi,2(·|s, a0, a1) for
all (s, a0, a1) ∈ S ×A×A.

We use NGPh (ε) and NGAh (ε) to denote the ε-bracket num-
ber of GPh and GAh . Similarly, when the transition proba-
bility or the advantage function possesses a low-dimension
embedding, we can also bound the ε-bracket number effi-
ciently.

E Proofs of Lower Bounds

E.1 Proof of Proposition 2

Given any S,A,H , consider a Markov Chain with horizon
H , state space S and transition PMC where |S| = S and
PMC,h : S × S 7→ [0, 1] specifies the transition probability
for each step h. Then we can construct a MDP which has the
same state space S and horizon H . In addition, the action
space A satisfies |A| = A and the transition P ? is indepen-
dent from the action, i.e., P ?h (s′|s, a) = PMC,h(s′|s) for all
a ∈ A.

We consider the case where πtar is a Markovian policy.
Then we can define πb,h(·|s) for every h ∈ [H], s ∈ S as
follows:

πb,h(a|s) =


πtar,h(a|s)/C, ifa = a1,

πtar,h(a|s) + (1− 1/C)πtar,h(a
1|s), ifa = a2,

πtar,h(a|s), otherwise,

and we select µ0 = d{πb,h}
H
h=1 .

Then since dπh(s) is fixed for any policy π, we know

Cst = sup
s,a,h

πtar,h(a|s)
πb,h(a|s)

= C.

On the other hand, we have

Ctr = sup
a1:H ,s1:H

∏
h∈[H]

πtar,h(ah|sh)

πb,h(ah|sh)

= sup
s1:H

∏
h∈[H]

πtar,h(a1|sh)

πb,h(a1|sh)
= CH .

This concludes our proof.

E.2 Proof of Theorem 2

The proof is inspired by the hard instances in (Rashidinejad
et al., 2021b). We consider the case C ≥ 2 and 1 < C < 2
respectively.

Case 1: C ≥ 2. Consider the case where there is only one
state s and two actions a1, a2. Set the dataset distribution
µ0 = µ1 where

µ0,h(s, a1) =
1

C
, µ0,h(s, a2) = 1− 1

C
, ∀h ∈ [H],

and µ0(τ) =
∏H
h=1 µ0,h(sh, ah) for all trajectory τ =

(s1, a1, · · · , sH , aH).

We consider two different reward function r1 and r2:

r1(τ) =

{
1
2 + x, if all the actions in τ are a1,
1
2 , otherwise.

r2(τ) =

{
1
2 − x, if all the actions in τ are a1,
1
2 , otherwise.

Here 0 < x < 1
2 is a quantity we will specify later and we

denote the special trajectory where all the actions are a1 by
τ?. Then we have two MDPs,M1 andM2 whose reward
functions are r1 and r2 respectively. It can be easily verified
that (M1, µ0) ∈ Θst(C), (M2, µ0) ∈ Θst(C).

Further, let L(π;M) denote the suboptimality of policy π
inM, then we have for all policies π,

L(π;M1) + L(π;M2) ≥ x.

Now we can apply Fano’s inequality, which leads to the
following inequality

inf
π̂

sup
M∈{M1,M2}

ED[L(π,M)]

≥ x

2

(
2−N ·KL

(
µ0 ⊗ µ1 ⊗ Pr1‖µ0 ⊗ µ1 ⊗ Pr2

))
.

Now we only need to bound KL
(
µ0⊗µ1⊗Pr1‖µ0⊗µ1⊗

Pr2
)

, which can be computed as follows:

KL
(
µ0 ⊗ µ1 ⊗ Pr1‖µ0 ⊗ µ1 ⊗ Pr2

)
=2

∑
τ0=τ?,τ1 6=τ?

µ0(τ0)µ1(τ1)KL
(
Bern(σ(x))‖Bern(σ(−x))

)
≤2 exp(1/2)x2

CH
.

14
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Then by letting x = min

{
1
2 ,
√

CH

2 exp(1/2)N

}
, we have

inf
π̂

sup
M∈{M1,M2}

ED[L(π,M)]

≥ x

2
= min

{
1

4
,

√
CH

8 exp(1/2)N

}
.

Case 2: 1 < C < 2. Consider the case where there are
two one states s1, s2 and two actions a1, a2. We suppose the
initial state distribution of P ?0 is fixed as P ?0 (s1) = C − 1
and P ?0 (s2) = 2 − C. In addition, the state will stay the
same throughout the whole episode. Then we can set the
dataset distribution µ0 = µ1 where

µ0(τ) =



2(C−1)
C · 1

2H
, if the state of τ is s1,

2−C
C , if the state of τ is s2

and the actions are all a1,
0, if the state of τ is s2

and the actions contain a2.

Then we know

µ0,h(s1, a1) = µ0,h(s1, a2) =
C − 1

C
,

µ0,h(s2, a1) =
2− C
C

, µ0,h(s2, a2) = 0, ∀h ∈ [H].

We consider two different reward function r1 and r2:

r1(τ) =


1
2 + x, if the state is s1 and

all the actions in τ are a1,
1
2 , otherwise.

r2(τ) =


1
2 − x, if the state is s1 and

all the actions in τ are a1,
1
2 , otherwise.

Here 0 < x < 1
2 is a quantity we will specify later and we

denote the special trajectory where the state is s1 and all the
actions are a1 by τ?. Then we have two MDPs,M1 and
M2 whose reward functions are r1 and r2 respectively. It
can be easily verified that (M1, µ0) ∈ Θst(C), (M2, µ0) ∈
Θst(C).

In addition, we have for all policies π,

L(π;M1) + L(π;M2) ≥ (C − 1)x.

Therefore by Fano’s inequality, we have

inf
π̂

sup
M∈{M1,M2}

ED[L(π,M)]

≥ (C − 1)x

2

(
2−N ·KL

(
µ0 ⊗ µ1 ⊗ Pr1‖µ0 ⊗ µ1 ⊗ Pr2

))
,

where the KL divergence can be computed as follows:

KL
(
µ0 ⊗ µ1 ⊗ Pr1‖µ0 ⊗ µ1 ⊗ Pr2

)
=2

∑
τ0=τ?,τ1 6=τ?

µ0(τ0)µ1(τ1)KL
(
Bern(σ(x))‖Bern(σ(−x))

)
≤4(C − 1) exp(1/2)x2

2HC
.

Then by letting x = min

{
1
2 ,
√

2HC
4 exp(1/2)(C−1)N

}
, we

have

inf
π̂

sup
M∈{M1,M2}

ED[L(π,M)]

≥ (C − 1)x

2
= min

{
C − 1

4
,

√
2HC(C − 1)

16 exp(1/2)N

}
.

In conclusion, we have for any C > 1 and H ≥ 1,

inf
π̂

sup
(M,µ0)∈Θst(C)

ED[J(π?; r?, P ?)− J(π̂; r?, P ?)]

& min

{
C − 1,

√
(max{C, 2})H−1(C − 1)

N

}
.

E.3 Proof of Theorem 3

The proof is quite similar to the proof of Theorem 2. We
consider the case C ≥ 2 and 1 < C < 2 respectively.

Case 1: C ≥ 2. Consider the case where there is only one
state s and two actions a1, a2. Set the dataset distribution
µ0 = µ1 where

µ0(τ?) =
1

C
, µ0(τ †) = 1− 1

C
,

where τ? is the trajecotry where the actions are all a1 and
τ † is the trajecotry where the actions are all a2.

We consider two different reward function r1 and r2:

r1(τ) =

{
1
2 + x, if all the actions in τ are a1,
1
2 , otherwise.

r2(τ) =

{
1
2 − x, if all the actions in τ are a1,
1
2 , otherwise.

Here 0 < x < 1
2 is a quantity we will specify later. Then

we have two MDPs,M1 andM2 whose reward functions
are r1 and r2 respectively. It can be easily verified that
(M1, µ0) ∈ Θtr(C), (M2, µ0) ∈ Θtr(C).
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Further, let L(π;M) denote the suboptimality of policy π
inM, then we have for all policies π,

L(π;M1) + L(π;M2) ≥ x.

Now we can apple Fano’s inequality, which leads to the
following inequality

inf
π̂

sup
M∈{M1,M2}

ED[L(π,M)]

≥ x

2

(
2−N ·KL

(
µ0 ⊗ µ1 ⊗ Pr1‖µ0 ⊗ µ1 ⊗ Pr2

))
.

Now we only need to bound KL
(
µ0⊗µ1⊗Pr1‖µ0⊗µ1⊗

Pr2
)

, which can be computed as follows:

KL
(
µ0 ⊗ µ1 ⊗ Pr1‖µ0 ⊗ µ1 ⊗ Pr2

)
=2

∑
τ0=τ?,τ1=τ†

µ0(τ0)µ1(τ1)

·KL
(
Bern(σ(x))‖Bern(σ(−x))

)
≤2 exp(1/2)x2

C
.

Then by letting x = min

{
1
2 ,
√

C
2 exp(1/2)N

}
, we have

inf
π̂

sup
M∈{M1,M2}

ED[L(π,M)]

≥ x

2
= min

{
1

4
,

√
C

8 exp(1/2)N

}
.

Case 2: 1 < C < 2. Consider the case where there are
two one states s1, s2 and two actions a1, a2. We suppose the
initial state distribution of P ?0 is fixed as P ?0 (s1) = C − 1
and P ?0 (s2) = 2 − C. In addition, the state will stay the
same throughout the whole episode. Then we can set the
dataset distribution µ0 = µ1 where

µ0(τ) =



2(C−1)
C · 1

2 , if the state of τ is s1

and the actions are all a1 or all a2,
2−C
C , if the state of τ is s2

and the actions are all a1,
0, if the state of τ is s2

and the actions contain a2.

Let τ? be the trajectory where the state is s1 and the actions
are all a1.

We further consider two different reward function r1 and
r2:

r1(τ) =


1
2 + x, if the state is s1 and

all the actions in τ are a1,
1
2 , otherwise.

r2(τ) =


1
2 − x, if the state is s1 and

all the actions in τ are a1,
1
2 , otherwise.

Here 0 < x < 1
2 is a quantity we will specify later. Then

we have two MDPs,M1 andM2 whose reward functions
are r1 and r2 respectively. It can be easily verified that
(M1, µ0) ∈ Θtr(C), (M2, µ0) ∈ Θtr(C).

In addition, we have for all policies π,

L(π;M1) + L(π;M2) ≥ (C − 1)x.

Therefore by Fano’s inequality, we have

inf
π̂

sup
M∈{M1,M2}

ED[L(π,M)]

≥ (C − 1)x

2

(
2−N ·KL

(
µ0 ⊗ µ1 ⊗ Pr1‖µ0 ⊗ µ1 ⊗ Pr2

))
,

where the KL divergence can be computed as follows:

KL
(
µ0 ⊗ µ1 ⊗ Pr1‖µ0 ⊗ µ1 ⊗ Pr2

)
=2

∑
τ0=τ?,τ1 6=τ?

µ0(τ0)µ1(τ1)KL
(
Bern(σ(x))‖Bern(σ(−x))

)
≤2(C − 1) exp(1/2)x2

C
.

Then by letting x = min

{
1
2 ,
√

C
2 exp(1/2)(C−1)N

}
, we

have

inf
π̂

sup
M∈{M1,M2}

ED[L(π,M)]

≥ (C − 1)x

2
= min

{
C − 1

4
,

√
(C − 1)

8 exp(1/2)N

}
.

In conclusion, we have for any C > 1 and H ≥ 1,

inf
π̂

sup
(M,µ0)∈Θst(C)

ED[J(π?; r?, P ?)− J(π̂; r?, P ?)]

& min

{
C − 1,

√
C − 1

N

}
.

F Proof of Theorem 4

The proof still consists of two steps, deriving the guarantee
of MLE and analyzing the performance of pessimistic offline
RL.

Step 1: MLE guarantee. Note that Lemma 1 and
Lemma 2 still applies here. Let E1 and E2 denote the event
in Lemma 1 and Lemma 2 respectively. Following almost
the same arguments, we have the following guarantee for
the estimation of the system dynamics:

16
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Lemma 3. Under Assumption 4, with probability at least
1− δ/2, the following event holds true:

(1)P ?h ∈ Ph(D), P ?0 ∈ Pini(D), ∀h ∈ [H − 1],

(2)E(sh,ah)∼µ0,h

[∥∥∥Ph(·|s, a)− P ?h (·|s, a)
∥∥∥2

1

]
+ E(sh,ah)∼µ1,h

[∥∥∥Ph(·|s, a)− P ?h (·|s, a)
∥∥∥2

1

]
≤
c log(HNGPh (1/N)/δ)

N
,∀h ∈ [H − 1], Ph ∈ Ph(D),

(3)Es∼µ0,1

[∥∥∥P0(s)− P ?0 (s)
∥∥∥2

1

]
+ Es∼µ1,1

[∥∥∥P0(s)− P ?0 (s)
∥∥∥2

1

]
≤
c log(HNGP0

(1/N)/δ)

N
,∀P0 ∈ P0(D).

The proof is omitted here. Let E3 denote the event in
Lemma 3.

Step 2: Pessimistic offline RL. We first introduce the
following lemma which suggests that under event E3, we can
evaluate the expected cumulative reward of πtar with respect
to any reward function r ∈ Gr via the system dynamics
Ph ∈ Ph(D):

Lemma 4. Suppose Asusmption 3 is true. Then under
E3, we have for all reward function r ∈ Gr and P =
({Ph}H−1

h=0 ) where Ph ∈ Ph(D) that

J(πtar; r, P
?)− J(πtar; r, P )

≤ Hrmax

√
cC2

P ({GPh}, πtar) log(HNP (1/N)/δ)

N
,

where NP = max0≤h≤H−1{NGPh}.

The proof is deferred to Appendix F.1.

Let (rinf
π , P inf

π ) denote argminr∈R(D),P∈Pini(D)×
∏H−1
h=1 Ph(D)

J(π; r, P ) − Eτ∼µref
[r(τ)]. Then under the event E3, we

can bound the suboptimality of π̂ as follows:

J(πtar; r
?, P ?)− J(π̂; r?, P ?)

=
(
J(πtar; r

?, P ?)− Eτ∼µref
[r?(τ)]

)
−
(
J(π̂; r?, P ?)− Eτ∼µref

[r?(τ)]
)

=
((
J(πtar; r

?, P ?)− Eτ∼µref
[r?(τ)]

)
−
(
J(πtar; r

inf
πtar

, P ?)− Eτ∼µref
[rinf
πtar

(τ)]
))

+
((
J(πtar; r

inf
πtar

, P ?)− Eτ∼µref
[rinf
πtar

(τ)]
)

−
(
J(πtar; r

inf
πtar

, P inf
πtar

)− Eτ∼µref
[rinf
πtar

(τ)]
))

+
((
J(πtar; r

inf
πtar

, P inf
πtar

)− Eτ∼µref
[rinf
πtar

(τ)]
)

−
(
J(π̂; rinf

π̂ , P inf
π̂ )− Eτ∼µref

[rinf
π̂ (τ)]

))
+
((
J(π̂; rinf

π̂ , P inf
π̂ )− Eτ∼µref

[rinf
π̂ (τ)]

)
−
(
J(π̂; r?, P ?)− Eτ∼µref

[r?(τ)]
))

≤
((
J(πtar; r

?, P ?)− Eτ∼µref
[r?(τ)]

)
−
(
J(πtar; r

inf
πtar

, P ?)− Eτ∼µref
[rinf
πtar

(τ)]
))

+
((
J(πtar; r

inf
πtar

, P ?)− Eτ∼µref
[rinf
πtar

(τ)]
)

−
(
J(πtar; r

inf
πtar

, P inf
πtar

)− Eτ∼µref
[rinf
πtar

(τ)]
))

+
((
J(π̂; rinf

π̂ , P inf
π̂ )− Eτ∼µref

[rinf
π̂ (τ)]

)
−
(
J(π̂; r?, P ?)− Eτ∼µref

[r?(τ)]
))

≤
((
J(πtar; r

?, P ?)− Eτ∼µref
[r?(τ)]

)
−
(
J(πtar; r

inf
πtar

, P ?)− Eτ∼µref
[rinf
πtar

(τ)]
))

+
((
J(πtar; r

inf
πtar

, P ?)− Eτ∼µref
[rinf
πtar

(τ)]
)

−
(
J(πtar; r

inf
πtar

, P inf
πtar

)− Eτ∼µref
[rinf
πtar

(τ)]
))

≤
√
cC2

r (Gr, πtar, µref)κ2 log(NGr (1/N)/δ)

N

+Hrmax

√
cC2

P ({GPh}, πtar) log(HNP (1/N)/δ)

N
,

where the third and fourth step are due to the definition of
π̂, (rinf

π̂ , P inf
π̂ ) and (1) in Lemma 3. The last step comes

from Lemma 4 and the proof of Theorem 1. This concludes
our proof.

F.1 Proof of Lemma 4

Let Ph be the system dynamics (P ?0 , {P ?t }ht=1, {Pt}H−1
t=h+1)

for all 0 ≤ h ≤ H − 1. Then we have

J(πtar; r, P
?)− J(πtar; r, P )

=

H−1∑
h=1

(J(πtar; r, P
h)− J(πtar; r, P

h−1))

+ (J(πtar; r, P
0)− J(πtar; r, P )).

For any h ∈ [H − 1], we have

J(πtar; r, P
h)− J(πtar; r, P

h−1)

=E(s1,a1,··· ,sh,ah)∼(πtar,P?)

[ ∑
sh+1

P ?h (sh+1|sh, ah)E(πtar,P )

[
r(τ)|s1, a1, · · · , sh+1

]
−
∑
sh+1

Ph(sh+1|sh, ah)E(πtar,P )

[
r(τ)|s1, a1, · · · , sh+1

]]
17
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=E(s1,a1,··· ,sh,ah)∼(πtar,P?)

[ ∑
sh+1

(P ?h (sh+1|sh, ah)

− Ph(sh+1|sh, ah))E(πtar,P )

[
r(τ)|s1, a1, · · · , sh+1

]]
≤rmaxE(sh,ah)∼(πtar,P?)

[∥∥P ?h (·|sh, ah)− Ph(·|sh, ah)
∥∥

1

]
≤rmax

√
cC2

P (πtar) log(HNGPh (1/N)/δ)

N
,

where E(πtar,P )

[
· |s1, a1, · · · , sh+1

]
is the distribution of

the trajectory τ when executing policy πtar under the tran-
sition probability {Pt}H−1

t=h+1 while fixing the history to
be s1, a1, · · · , sh+1. Here the first step utilizes the Tower
property, the third and fourth step uses Cuachy-Schwartz
inequality and the last step comes from Lemma 3.

For J(πtar; r, P
0)− J(πtar; r, P ), similarly we have

J(πtar; r, P
0)− J(πtar; r, P )

≤ rmax

√
cC2

P (πtar) log(HNGP0
(1/N)/δ)

N
.

Therefore we conclude that

J(πtar; r, P
?)− J(πtar; r, P )

≤ Hrmax

√
cC2

P (πtar) log(HNP (1/N)/δ)

N
.

G Proof of Theorem 5

We first derive the guarantee of MLE for estimating A?.
Similar to Lemma 1 and Lemma 2, we have the following
lemma in the action-based comparison setting:

Lemma 5. Under Assumption 7, with probability at least
1− δ, the following event holds true: ∀h ∈ [H],

Es∼µh,a0∼µ0,h(·|s),a1∼µ1,h(·|s)

[∥∥∥PÂh(·|s, a0, a1)

− PA?h(·|s, a0, a1)
∥∥∥2

1

]
≤
c log(HNGAh (1/N)/δ)

N
.

The proof is omitted here. Let E4 denote the event in
Lemma 5. Then under Assumption 8, we can apply the
mean value theorem and obtain that under E4, we have for
all h ∈ [H] that

Es∼µh,a0∼µ0,h(·|s),a1∼µ1,h(·|s)

[
|A?h(s, a0)−A?h(s, a1)

− Âh(s, a0) + Âh(s, a1)|2
]

≤
cκ2 log(HNGAh (1/N)/δ)

N
,∀h ∈ [H]. (6)

Recall that κ = 1
infx∈[−rmax,rmax] Φ′(x) .

On the other hand, note that we have the following perfor-
mance lemma:
Lemma 6. For any deterministic Markovian policies π and
π′, we have

J(π; r?, P ?)− J(π′; r?, P ?)

=

H∑
h=1

Es∼dπ′h
[
Qπh(s, π(s))−Qπh(s, π′(s))

]
The proof is deferred to Appendix G.1.

The rest of the proof largely follows Uehara et al. (2023).
Under the event E4, we can bound the suboptimality of π̂ as
follows:

J(π?; r?, P ?)− J(π̂; r?, P ?)

≤rmax

H∑
h=1

Es∼dπ?h
[
1(π?h(s) 6= π̂h(s))

· 1(Q?h(s, π̂h(s)) < Q?h(s, π?h(s)))
]

≤rmax

H∑
h=1

Es∼dπ?h

[∑
a∈A

1

(
Âh(s, a) ≥ Âh(s, π?h(s))

)
· 1
(
Q?h(s, a) < Q?h(s, π?h(s))

)]
,

where the first step comes from Lemma 6 and the second
step is due to the definition of π̂. Then for any α > 0, we
have

Es∼dπ?h

[∑
a∈A

1

(
Âh(s, a) ≥ Âh(s, π?h(s))

)
· 1
(
Q?h(s, a) < Q?h(s, π?h(s))

)]
≤Es∼dπ?h

[∑
a∈A

1

(
Q?h(s, π?h(s)) > Q?h(s, a) ≥ Q?h(s, π?h(s))− α

)]
+ Es∼dπ?h

[∑
a∈A

1

(
Q?h(s, π?h(s))−Q?h(s, a)

− Âh(s, π?h(s)) + Âh(s, a) ≥ α
)]
.

By Assumption 6, we have

Es∼dπ?h

[∑
a∈A

1

(
Q?h(s, π?h(s)) > Q?h(s, a) ≥ Q?h(s, π?h(s))− α

)]
≤ |A|(α/α0)β .

For the second term, we have

Es∼dπ?h

[∑
a∈A

1

(
Q?h(s, π?h(s))−Q?h(s, a)

18
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− Âh(s, π?h(s)) + Âh(s, a) ≥ α
)]

=
1

α2
Es∼dπ?h

[∑
a∈A

α2
1

(
A?h(s, π?h(s))−A?h(s, a)

− Âh(s, π?h(s)) + Âh(s, a) ≥ α
)]

≤ 1

α2
Es∼dπ?h

[∑
a∈A

∣∣∣A?h(s, π?h(s))−A?h(s, a)

− Âh(s, π?h(s)) + Âh(s, a)
∣∣∣2]

≤
c|A|Cactκ

2 log(HNGAh (1/N)/δ)

α2N
,

where the last step comes from the definition of Cact and
(6).

Therefore by picking appropriate α, we have with probabil-
ity at least 1− δ that

J(π?; r?, P ?)− J(π̂; r?, P ?) ≤ cH|A|
(

2

β

) β−2
β+2
(

1

α0

) 2β
β+2

·
(
κ2Cact log(HNGA(1/N)/δ)

N

) β
β+2

.

G.1 Proof of Lemma 6

For any two policies π and π′, we have that

J(π′; r?, P ?)− J(π; r?, P ?)

=Eπ′
[
r?1(s1, a1) + V π

′

2 (s2)
]
− Eπ′ [V π1 (s1)]

=Eπ′
[
V π
′

2 (s2)− (V π1 (s1)− r?1(s1, a1))
]

=Eπ′
[
V π
′

2 (s2)− V π2 (s2)
]

+ Eπ′ [Qπ1 (s1, a1)− V r,π1 (s1)]

=Eπ′
[
V π
′

2 (s2)− V π2 (s2)
]

+ Eπ′ [〈Qπ1 (s1, ·), π′1(·|s1)− π1(·|s1)〉]

= · · · =
H∑
h=1

Eπ′ [〈Qπh(sh, ·), π′h(·|s)− πh(·|s)〉] .

This concludes our proof.
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