
SwiftSage: A Generative Agent with
Fast and Slow Thinking for Complex Interactive Tasks

Bill Yuchen Lin 1 Yicheng Fu 2 Karina Yang 3 Prithviraj Ammanabrolu 1 Faeze Brahman 1 Shiyu Huang 4

Chandra Bhagavatula 1 Yejin Choi 1 5 Xiang Ren 1 3

Abstract
We introduce SWIFTSAGE, a novel agent frame-
work inspired by the dual-process theory of hu-
man cognition, designed to excel in action plan-
ning for complex interactive reasoning tasks.
SWIFTSAGE integrates the strengths of behav-
ior cloning and prompting large language models
(LLMs) to enhance task completion performance.
The framework comprises two primary modules:
the SWIFT module, representing fast and intu-
itive thinking, and the SAGE module, emulating
deliberate thought processes. The SWIFT mod-
ule is a small encoder-decoder LM fine-tuned on
the oracle agent’s action trajectories, while the
SAGE module employs LLMs such as GPT-4 for
subgoal planning and grounding. We develop a
heuristic method to harmoniously integrate the
two modules, resulting in a more efficient and
robust problem-solving process. In 30 tasks from
the ScienceWorld benchmark, SWIFTSAGE sig-
nificantly outperforms other methods such as Say-
Can, ReAct, and Reflexion, demonstrating its ef-
fectiveness in solving complex real-world tasks.

1. Introduction
The advancement of artificial general intelligence is largely
dependent on the development of agents that are proficient
in complex interactive reasoning tasks. These agents should
be capable of exhibiting problem-solving abilities akin to
humans within dynamic, open-world environments (Reed
et al., 2022; Bubeck et al., 2023). For example, the Science-
World benchmark (Wang et al., 2022) features a task where
an agent must determine the electrical conductivity of an un-
known object. In a simulated environment, the agent must
navigate to appropriate rooms, locate and acquire essen-

Website: https://yuchenlin.xyz/swiftsage/. Affiliations: 1Allen
Institute for AI 2Tsinghua University 3University of Southern Cal-
ifornia 44Paradigm Inc. 5University of Washington. Correspon-
dence to: Bill Yuchen Lin <yuchenl@allenai.org>.

tial items, such as batteries and light bulbs, build a circuit,
perform an experiment, and interpret the results. Tackling
such a complex interactive task demands agents to exhibit
long-horizon planning, long-term memorization, subgoal
decomposition, spatial reasoning, exception handling, and
commonsense knowledge capabilities (Wang et al., 2023b).

There are three primary approaches to developing agents
capable of addressing complex interactive reasoning tasks:
(1) deep reinforcement learning (RL), (2) behavior cloning
(BC) (Torabi et al., 2018) through sequence-to-sequence
(seq2seq) learning (Sutskever et al., 2014), and (3) prompt-
ing large language models (LLMs) (Brown et al., 2020). In
addition to conventional RL methods such as DRRN (He
et al., 2016), interactive reasoning can be framed as a
seq2seq task, where the input text serves as the current state
description and the output text corresponds to the subse-
quent action (Chen et al., 2021; Ammanabrolu et al., 2021).
By leveraging numerous gold trajectories generated by or-
acle agents, it becomes feasible to fine-tune Transformer
models (Vaswani et al., 2017), like T5 (Raffel et al., 2020),
to effectively imitate the behavior of these oracle agents. Re-
cent studies have also demonstrated that generative agents
based on prompting LLMs, such as GPT-4, can produce
reasonable plans and actions (Lin et al., 2022; Huang et al.,
2022; Song et al., 2022).

Although the aforementioned methods exhibit remarkable
performance in relatively simple tasks, their ability to gener-
alize to more complex and demanding tasks is limited. Both
RL-based and seq2seq-based BC approaches effectively ac-
quire knowledge from the environment through large-scale
interactions and learn general action patterns from oracle
agents. However, they face difficulties in decomposing
tasks into subgoals, maintaining long-term memory, gener-
alizing to unseen tasks, and handling exceptions. In contrast,
instruction-tuned LLMs (Ouyang et al., 2022) demonstrate
the ability to generate reasonable high-level plans for com-
plex tasks and adapt their outputs based on human feed-
back. Yet, grounding their outputs to executable actions
in the environment remains a challenge. These procedures
also lack the capability to efficiently handle environment-
specific exceptions that prevent agents from adhering to

1

SwiftSage: A Generative Agent with Fast & Slow Thinking for Complex Interactive Tasks

SayCan ReAct Reflexion

Task: Your task is to boil tin.

For Each Timestep t: ↓

Action 1: go to kitchen
> you moved to kitchen
Action 2: look around
> In this kitchen, you can see …
…..
Action t-1: pick up metal pot
> metal pot in inventory now

Demo: An oracle path for the
task of boiling water.

K best generations for Action t

Action t: put metal pot on stove

Reranking

Task: Your task is to boil tin.
Action 1: go to kitchen
> you moved to kitchen
Action 2: look around
> In this kitchen, you can see …
…..
Action t-2: think: now I need to
place the metal pot on a heater.
> OK.
Action t-1: pick up metal pot
> metal pot in inventory now

Demo: oracle path + manually
annotated subgoals

LLM

Action t: put metal pot on stove

For Each Timestep t: ↓

Task: Your task is to boil tin. +
the of previously
failed trials in the last round.
Action history (<= t-1) for this
round. (same as ReAct)

Demo: ReAct’s version.

Action t: put tin into metal pot

For Each Round: ↓

LLM

LLM

SwiftSage

Task: Your task is to boil tin.
Action history <= t-1

Demo: w/o manual annotations

Action Buffer: Action t,
Action t+1, Action t+2 , …

Only when needed: ↓

Small LM

(e.g., GPT-4)

Oracle paths for training data.
offline imitation learning

LLM reflection

The full action history of the
previous failed round.

reflection

Prompts for object locating,
planning & tracking subgoals,
and online exception handling.

LLM
Grounding
Templates

LLM

Next
subgoals

>>For Each Timestep t: ↓

Figure 1. Comparing methods of prompting LLMs to build agents for interactive tasks.

the LLM’s plans. Additionally, previous methods such as
SAYCAN (Ahn et al., 2022), REACT (Yao et al., 2022) and
REFLEXION (Shinn et al., 2023) require a new inference
with LLMs for each time step, making them considerably
costly and inefficient (see Figure 1).

Inspired by the dual process theory (Wason & Evans, 1974;
Kahneman, 2011), we propose a novel framework that en-
ables agents to closely emulate how humans solve complex,
open-world tasks. The dual-process theory posits that hu-
man cognition is composed of two distinct systems: System
1, characterized by rapid, intuitive, and automatic thinking;
and System 2, which entails methodical, analytical, and
deliberate thought processes. System 1 is reminiscent of
seq2seq methods, which learn through imitation of oracle
agents and primarily operate utilizing shallow action pat-
terns. Conversely, System 2 bears resemblance to LLMs
that excel in applying commonsense knowledge, engaging in
step-by-step reasoning, devising subgoal strategies, and ex-
ercising self-reflection. Thus, our proposed method, SWIFT-
SAGE, is designed to enable both fast and slow thinking in
complex interactive reasoning tasks. It effectively integrates
the strengths of behavior cloning (representing System 1)
and prompting LLMs (emulating System 2), resulting in
significant enhancements in task completion performance
and efficiency.

Specifically, SWIFTSAGE consists of two primary modules:
the SWIFT module and the SAGE module. The SWIFT mod-
ule is a small encoder-decoder LM, fine-tuned on a T5-large
(770m) checkpoint using the searched oracle trajectories of
training tasks. It encodes short-term memory components,
such as previous actions, observations, visited locations,
as well as the current environment state. Then, it decodes

the next individual action. This module simulates the fast,
intuitive thinking characteristic of System 1. The SAGE
module, representing the deliberate thinking of System 2,
utilizes LLMs, such as GPT-4, and is structured around two
prompting stages: planning and grounding. In the plan-
ning stage, we prompt LLMs to locate necessary items,
plan and track subgoals, as well as detect and fix poten-
tial exceptions and mistakes. In the grounding stage, we
focus on utilizing LLMs to transform the output subgoals
derived from the planning stage into a sequence of actions
by demonstrating potential action templates. Unlike prior
methods, where LLMs only generate the next immediate ac-
tion, our procedures engage in longer-term action planning.
To harmoniously integrate the SWIFT and SAGE modules,
we developed a heuristic algorithm that determines when
to (de)activate the SAGE module and how to combine the
outputs effectively with an action buffer mechanism.

In a comprehensive evaluation on 30 task types from the
ScienceWorld benchmark, SWIFTSAGE significantly outper-
forms other methods, achieving a state-of-the-art average
score of 84.7. In comparison, SAYCAN scores 33.8, RE-
ACT obtains 36.4, and REFLEXION reaches 45.3. Moreover,
SWIFTSAGE is more cost-effective and efficient, requiring
much fewer tokens per action for LLM inference than pre-
vious methods. This considerable performance advantage
highlights the effectiveness and efficiency of the SWIFT-
SAGE framework in addressing complex interactive tasks.

2. Background and Related Work
We first provide a formal introduction to complex inter-
active reasoning tasks, with a particular emphasis on the

2

SwiftSage: A Generative Agent with Fast & Slow Thinking for Complex Interactive Tasks

ScienceWorld benchmark. Subsequently, we present a sum-
mary of existing methods that can be adapted for interactive
reasoning, which also serve as baseline methods in our ex-
periments. Lastly, we discuss the dual-process theory, which
serves as a significant inspiration for our work.

2.1. Complex Interactive Reasoning

We define interactive reasoning as the problems where
agents are tasked with accomplishing a goal within an in-
teractive environment, typically simulated by engines such
as AI2Thor (Kolve et al., 2017) and TextWorld (Côté et al.,
2018). Our focus lies on the textual environment of Science-
World (Wang et al., 2022) and the complex interactive tasks
it supports. Simple interactive tasks, like those created in
ALFWorld (Shridhar et al., 2021) and TWC (Murugesan
et al., 2021), primarily involve searching for and placing
objects as well as performing basic actions within a sin-
gle location. Many of these simple tasks have been almost
solved by recent works.

In contrast, tasks in ScienceWorld exhibit greater complex-
ity, characterized by more challenging task planning and
a significantly larger action space (encompassing 10 loca-
tions, 200 types of objects with varying states, and 25 types
of actions). Furthermore, agents may encounter random,
unforeseen obstacles, such as broken stoves or missing soil,
which hinder the execution of planned actions. As a result,
agents must adapt and re-plan accordingly, for example, by
seeking alternative heat sources or using a shovel on the
outside ground to get soil. These challenges demand that
agents possess skills in long-horizon planning, long-term
memory, subgoal decomposition, exception handling, and
commonsense knowledge—capabilities that are not explic-
itly required for simple interactive tasks.

2.2. Reinforcement Learning & Imitation Learning

DRRN. Interactive tasks can naturally be framed as
partially-observable Markov decision processes (POMDPs),
enabling the application of RL-based methods. Deep Rein-
forced Relevance Network (DRRN) (He et al., 2016) is a
standard baseline method to learn agents within text environ-
ment. It aims to learn representations of observations and
actions separately and train a policy network to select ac-
tions from candidates based on feedback from the simulated
environment. CALM (Yao et al., 2020) is a reranking-based
method that combines DRRN with a causal language model
(LM) fine-tuned with oracle transcripts. In essence, the
causal LM captures task-specific and environment-specific
knowledge through imitation learning, and the DRRN learns
to rerank the predictions from the LM.

The KG-A2C (Ammanabrolu & Hausknecht, 2020) method
uses an OpenIE technique (Angeli et al., 2015) to represent
environment states with graph structures and dynamically

update these graphs. These graphs guide policy networks
by constraining the combinations of action templates and
objects. This method has been shown to be effective in other
domains such as for multimodal embodied agents (Notting-
ham et al., 2023).

Behavior cloning for offline imitation learning. Behav-
ior cloning is an imitation learning method that trains a
seq2seq Transformer offline with action transcripts of simi-
lar training tasks generated by oracle agents (Torabi et al.,
2018; Ammanabrolu et al., 2021). During training, it uses
the previous action, observation at time step t− 1, and the
current observation as input and learns to output the next
action. The Text Decision Transformer (TDT) is a textual
variant of the Decision Transformer (Chen et al., 2021),
which also employs behavior cloning and uses the same
data. The primary innovation of TDT is the introduction
of reward-to-go as part of the inputs, enabling the model
to learn predicting actions that maximize future expected
rewards.

2.3. Prompting LLMs for Action Planning.

Language models (LLMs) such as GPT-4 have shown
promise for action planning in interactive tasks (Lin et al.,
2022; Huang et al., 2022; Song et al., 2022; Wang et al.,
2023a). In this paper, we adapt three prominent methods to
complex interactive reasoning tasks in ScienceWorld: SAY-
CAN (Ahn et al., 2022), REACT (Yao et al., 2022), and
REFLEXION (Shinn et al., 2023).

SAYCAN (Ahn et al., 2022) is a straightforward agent that
integrates an LLM with a value function of underlying poli-
cies regarding grounding affordances (i.e., the feasibility
of an action in the environment). We need to provide the
history and current environment as textual inputs to LLMs
for generating a ranked list of action candidates. This action
list is then reranked based on a value function.

REACT (Yao et al., 2022) presents a virtual ‘think’ action,
enabling LLMs to generate subgoals during action plan-
ning. This approach requires human annotators to supply
examples of correct subgoals for each task type, employing
few-shot in-context learning to teach LLMs when and how
to ‘think’ in order to plan subsequent subgoals, in addition
to providing complete action trajectories.

REFLEXION (Shinn et al., 2023), a recent work building on
REACT, proposes a multi-round approach enabling LLMs
to use the history of previously failed rounds to refine their
planning for the next round. This self-reflection mechanism
helps LLMs improve after each failed attempt. However,
this may not be practical in real-world applications for many
tasks, as actions in failed trials can be irrecoverable.

All three methods require a new LLM inference at each time

3

SwiftSage: A Generative Agent with Fast & Slow Thinking for Complex Interactive Tasks

step to predict the next immediate action, resulting in inef-
ficient and costly agents. REACT and REFLEXION require
human annotations of correct subgoals for each unseen task
type. Moreover, it is difficult to generalize REFLEXION to
real-world situations where trial-and-error approaches can
be infeasible for embodied tasks.

2.4. Dual-Process Theory

The dual-process theory (Wason & Evans, 1974; Kahneman,
2011) is a cognitive psychological framework proposing
the existence of a fast and a slow thinking systems in the
human brain. This influential theory has found widespread
applications across various fields, highlighting the critical
role of both systems in shaping human cognition (Anthony
et al., 2017; Chen et al., 2019; Ganapini et al., 2021; Miech
et al., 2021). By integrating the complementary strengths
of both systems, agents can effectively and efficiently han-
dle diverse challenges in real-world scenarios. Inspired by
this, we aim to construct a generative agent that utilizes a
small seq2seq LM as System 1 for associative reasoning via
behavior cloning while developing System 2 for analytical
reasoning by prompting LLMs.

3. SWIFTSAGE: A Generative Agent with Fast
and Slow Thinking

3.1. Problem Formulation

Environment and tasks. We focus on complex interac-
tive reasoning tasks situated in virtual textual environments
such as ScienceWorld (Wang et al., 2022). ScienceWorld
provides an optimal setting for developing and evaluating
agents in complex tasks, comprising 30 distinct task types
covering 10 topics in science experiments. It features 10
locations, including an art studio, workshop, kitchen, living
room, bedroom, bathroom, foundry, greenhouse, outdoor
area, and a connecting hallway. The environment includes
200+ object types with multiple states (e.g., open, activated)
and supports 25 action templates, resulting in an intractable
search space. The simulator can generate numerous vari-
ations of each task type, providing a rich training ground.
In each variation, the agent and environment initialization,
such as the locations and states of objects, will differ. A
plethora of training variations encompassing all task types
are available for training agents. Additionally, it provides a
handcrafted oracle agent to search for successful transcripts
with minimal actions for offline learning.

Evaluation is done on a set of testing variations with un-
seen combinations of required objects and situations, thus
substantially different from the training variations. For ex-
ample, a training variation may involve boiling water, while
a testing variation could require boiling tin. Therefore, it is
crucial to ensure the agent’s compositional generalization

ability for effectively handling real-world scenarios.

Interactions. Given a task variation, an agent is provided
with the task description D and the initial environment state
(t = 0). The task description D is a text specifying a high-
level goal, e.g., “Your task is to test if an unknown substance
A is electronically conductive.” At each time step t, the
agent generates an action At based on a set of supported
action templates (e.g., pick up X, use X on Y). A0 is
always “look around” for showing initial environment
information. Upon receiving an action from the agent, the
environment produces feedback in four dimensions:

• Observation Ot provides direct feedback on the action At

regarding its effects on the environment or the information
queried. For example, an At of “use thermometer
on the substance in metal pot” may result
in an Ot like “The temperature is 80F.”

• Environment Et represents the current room in which
the agent is situated and provides details about all visible
objects. Object visibility is based on container states, e.g.,
objects within a closed fridge are not included in Et until
the agent performs an action like “open fridge.”

• Inventory It lists objects picked up by the agent, which
is particularly useful when agents collect items from dif-
ferent locations to complete the task.

• Score St represents the agent’s cumulative score ranging
from 0 to 100. When a required intermediate state is
achieved, the score increases with a positive reward.

3.2. SWIFT: The Module for Intuitive and Associative
Thinking via Imitation Learning

Imitation learning is used to construct an agent that learns
to mimic oracle agents in various training scenarios through
seq2seq learning. Previous methods, such as TDT (Wang
et al., 2022), mainly employ one-hop history as input context
and learn to output the subsequent action At (Wang et al.,
2022). However, these methods exhibit limitations due to
their restricted context of action history and harmful biases
arising from data imbalance. To address these issues, we
introduce our SWIFT module, depicted in Figure 2.

Representation for longer history. We expand the con-
ventional one-hop BC to multi-hop by incorporating a slid-
ing window of observations and rewards for the K = 10 re-
cent actions. Additionally, we include a special field for vis-
ited rooms (without duplication). This approach aims to pro-
vide agents with a longer context and prevent unnecessary
room navigation. The input format is as follows: “Task: D;
Time: t − 1; Score: St−1; Action history: [At−i

(+Rt−i) → Ot−i] /* i loops from K to 1*/; Current
room: Et−1; Inventory: It−1; Visited rooms:
{E∗

1 , . . . , E
∗
t−1}”. Here, Rt = St − St−1 represents the

4

SwiftSage: A Generative Agent with Fast & Slow Thinking for Complex Interactive Tasks

Demo + Task + Env. + History + Plan + Action Types:
- POUR (A, B): pour object A into container B; e.g., POUR(water, pot)
- … Convert next subgoals to a sequence of actions:

Time to
switch

Plans: Q1: … Q2: … Q3: …
Q4: 1. Find a working heat source
2. Place the metal pot with ice cream on the heat source.
3. Wait until the ice cream melts.
Q5: You tried to use the broken stove as a heat source. To
fix this, you should try using the oven in the kitchen or …

Sage: Prompting LLMs (GPT-4) for Planning and Grounding the Next Subgoals

Swift:

Q1 & Q2: Locate Needed Objects

Q5: Detect & Fix Exceptions
Q3 & Q4: Plan & Track Subgoals

Task: Your task is to melt ice cream.; Time: 14; Score: 35; Action history: <extra_id_0> Action 5 (+5): open fridge
--> You opened fridge. In it, you see an ice cream… […] <extra_id_9> Action 14 (+0): move metal pot to stove --
> You move the metal pot to the stove. </s> Current environment: This room is kitchen. You see: a fridge
(closed) | a sink | an oven (closed, turned off) | a stove (turned off; on it: a metal pot containing ice cream …).
|[….]| Inventory: an orange, … </s> Visited: workshop, hallway, kitchen </s> What should be the next action?

Next action:
activate stove

Obs. 15: The stove appears
broken and can't be activated.

Task + History (t=1→15) + Env. LLM

open oven
move metal pot to oven
close oven
activate oven

Plan

G
ro

un
dAction buffer

LL
M

(T5-large w/
imitation learning)

Env.

Figure 2. An example of how SWIFTSAGE works with fast and slow thinking. The SWIFT module is offline trained via imitation
learning with a small LM such as T5-large (770m). When it is necessary, for example, encountering an exception, we switch to the SAGE

module that prompts LLMs (e.g., GPT-4) for planning and grounding the next subgoals, resulting in an action buffer.

reward at t, and E∗
t is the location name at t.

Balanced imitation learning. To avoid bias caused by
data imbalance for seq2seq learning, we down-sampled spe-
cific types of tasks and actions to achieve a more balanced
final dataset for training. We used the T5-large with 770
million parameter and instruction-following ability (Chung
et al., 2022), creating an efficient agent that we named
SWIFT. Our empirical results show that the SWIFT module
performs much better than TDT (11 billion) despite being
15x smaller in size.

The SWIFT module exhibits greater accuracy during initial
time steps, enabling it to attain higher scores in the early
stages of a complex task. However, it often fails to gener-
alize to unseen situations. The module also has a tendency
to repeat meaningless actions when its learned plans yield
exceptions from the environment (e.g., the broken stove
in Figure 2). This is partly due to the nature of imitation
learning, which prioritizes emulating the observable actions
of oracle agents rather than their intrinsic planning abilities.
Besides, since the oracle trajectories contain only the short-
est, correct actions, it is thus also challenging for the SWIFT
to learn how to fix mistaken actions.

3.3. SAGE: The Module for Deliberate and Analytical
Thinking via Prompting LLMs

While the SWIFT module acquires surface knowledge about
the environment and task types through imitation learning, it
lacks two key abilities essential for complex interactive rea-
soning: 1) generalizable planning and tracking of subgoals,
and 2) robust handling of exceptions. Prior research has
shown that LLMs outperform smaller LMs in these abilities.
They can perform step-by-step reasoning to devise concrete
plans for tasks and self-refine their outcomes. However,
the performance of prior methods remains unsatisfactory in
complex interactive tasks such as those in ScienceWorld.

We introduce a novel two-stage approach, named SWIFT-
SAGE. This method initially acquires higher-level recom-
mendations from LLMs during the planning stage, followed
by their translation into specific action sequences in the
grounding stage. By decoupling the planning and ground-
ing processes, SWIFTSAGE effectively generates a series of
actions for completing the planned subgoals.

Planning stage. In this stage, we leverage LLMs to plan
based on the current state. Specifically, we prompt LLMs
with a single prompt that includes a summarized version of
the task description and action history, and asks the follow-
ing five key questions.

Before posing the five planning-related questions, we con-

5

SwiftSage: A Generative Agent with Fast & Slow Thinking for Complex Interactive Tasks

dense the entire action history (A<t and O<t), and the cur-
rent environment information Et−1. Q1 and Q2 pertain to
objects, as acquiring all necessary objects serves as the foun-
dation for effective task planning. By addressing these ques-
tions, we ensure that LLMs develop a comprehensive under-
standing of the current environment. Q3 prompts LLMs to
engage in step-by-step planning by decomposing the task
into a series of subgoals. Q4 acts as a follow-up question, al-
lowing the agent to monitor its progress based on the action
history and determine completed subgoals, subsequently
focusing on the remaining tasks. Lastly, Q5 is employed to
identify and address potential exceptions. These questions
can be further tailored with additional environment-specific
hints, thereby enhancing their adaptability.

▶ Q1(locate objects): “To complete the task,
which objects do I need to collect? Please list them
and their possible locations one by one.”

▶ Q2(track objects): “Are there any objects that
have not been collected yet?”

▶ Q3(plan subgoals): “To complete the task most
efficiently, what are the important subgoals to achieve?
Please list the subgoals one by one.”

▶ Q4(track progress): “Considering these sub-
goals, what have I already completed? And which
subgoal should I focus on right now?”

▶ Q5(handle exceptions): “Have I made any
mistakes that might prevent me from efficiently com-
pleting the next subgoal? If any , how should I fix
them?”

To improve the structure of the LLMs’ outputs and facilitate
parsing, we incorporate additional instructions in the prompt.
By utilizing a single input to obtain answers to all five ques-
tions in one output, rather than engaging in multiple rounds
of interactive prompting, our approach is more efficient and
cost-effective than the iterative prompting methods.

Q4 and Q5 are of primary importance, while Q1-Q3 serve
as auxiliary guidance for the LLMs. If the action history
indicates a mistaken action or an unachievable previous
subgoal, the response to Q5 refines the answer to Q4 through
self-reflection on the fly. This approach differs from the
REFLEXION agent, which only prompts reflective questions
at the end of a failed trial, allowing agents to improve their
planning in subsequent attempts. In contrast, our method
detects exceptions and errors each time the agent plans for
the next subgoals, enabling earlier correction of the agent’s
behavior.

Grounding stage. While the answers to Q1-Q5 provide
valuable guidance for agents, they are not directly exe-
cutable. Converting plans into valid actions that can be
accepted by the environment remains a challenge. Previ-

ous methods using LLMs over-generate candidates, and
they rely on reranking or filtering based on the action space
to select the next action. However, this is inefficient and
inaccurate for complex tasks with vast action spaces. Ad-
ditionally, these methods generate a single action at a time,
which can be both costly and ineffective for long-horizon
tasks.

To tackle these issues, we first present supported action
types using a formal style accompanied by remarks. For in-
stance, the action type “pour X into Y” is introduced
as “POUR(X, Y): pour object X into container Y; e.g.,
pour red paint into wood cup”. We then incorporate the
LLM’s outputs from the planning stage as part of the in-
put for the grounding stage. Furthermore, we provide the
recent action history of the past 10 time steps as context.
Finally, we prompt LLMs to concentrate on the next sub-
goal and convert it into a list of actions (rather than a single
action) to accomplish the next subgoal. Our formatting
instructions enable the straightforward splitting and conver-
sion of output actions from LLMs in the grounding stage
back to their original action representations. We denote
this list of actions generated by LLMs as the action buffer:
B = {Ât, Ât+1, . . . }.

3.4. Integration of Fast and Slow Thinking

Having described the SWIFT and SAGE modules, we now
address the question of how to merge both modules and ef-
fectively integrate fast and slow thinking within the SWIFT-
SAGE agent. We establish a heuristic algorithm to control
the activation and deactivation of the two modules.

Initially, we employ the SWIFT module due to its superior
intuitive reasoning capabilities, which facilitate accurate as-
sociations between the task description and the environment
during the first few actions. We switch from SWIFT mode
to SAGE when any of the following conditions are met:

1) There are five consecutive time steps with zero reward
(
∑t−1

i=t−5 Ri = 0).

2) The SWIFT’s prediction for the next action (A′
t) is

invalid in the current environment.

3) A′
t can result in a critical decision, such as giving the

final answer for the experiment result.

4) The observation of A′
t suggests that an exception is

encountered.

Upon activating the SAGE module, we execute the two-
stage prompting process and generate an action buffer. We
attempt to execute each predicted action and revert to the
SWIFT module when the buffer is empty. This enables a
seamless integration of both modules, providing an efficient
and robust reasoning process for the SWIFTSAGE agent.

6

SwiftSage: A Generative Agent with Fast & Slow Thinking for Complex Interactive Tasks

4. Evaluation
4.1. Evaluation Setup

To evaluate the effectiveness of SWIFTSAGE and other base-
line methods in complex interactive reasoning tasks, we
use the ScienceWorld benchmark. In Section 2.1 and Sec-
tion 3.1, we introduce the benchmark and problem formula-
tion. Each task type is categorized as ‘short’ (S), ‘medium’
(M), or ‘long’ (L) based on the average length of the ora-
cle truth trajectories. However, the length of the task does
not necessarily indicate its level of difficulty as some tasks
may require additional commonsense knowledge. Further
evaluation details are provided in the appendix.

4.2. Baseline Agents

In addition to the baseline methods evaluated in the Sci-
enceWorld paper, such as DRRN, CALM, KG-A2C, and
TDT, we incorporate three LLM-based prompting tech-
niques: SAYCAN, REACT, and REFLEXION, as detailed
in Section 2.3 and Figure 1. This subsection presents the
implementation details for adapting these methods to build
ScienceWorld agents.

SAYCAN necessitates a value function from the envi-
ronment for reranking purposes. We employ Sentence-
BERT (Reimers & Gurevych, 2019) to rank all valid actions
(generated by ScienceWorld’s APIs) based on their simi-
larity to the top 5 generations for At from SAYCAN. We
implemented REACT and REFLEXION in a similar manner.
Adhering to their released code, we utilized the best single
generation and determined the valid action with the mini-
mal edit distance, if required. Both REACT and REFLEX-
ION necessitate subgoal annotations for teaching LLMs to
plan with virtual ‘think’ actions. We annotated such truth
subgoals by translating ScienceWorld’s APIs into natural
language, which was also employed by the oracle agents.
For all agents, we incorporated the complete trajectories
of one or two training variations from the same task type
for in-context learning. Our primary experiments were con-
ducted using OpenAI’s GPT-4; however, other LLMs can
be readily substituted as required.

4.3. Results and analysis.

Main Results Table 1 compares the performance of vari-
ous agents across 30 types of tasks. Detailed descriptions
of each task type can be found in the ScienceWorld pa-
per (Wang et al., 2022) and our appendix. It is evident that
LLM-based methods outperform conventional agents due
to their superior generalization ability, albeit at a higher
deployment cost. The behavior cloning model TDT (Wang
et al., 2022; Chen et al., 2021) (11b) performs on par with
DRRN (He et al., 2016), but with greater efficiency in learn-
ing and inference. In contrast, our SWIFT-only agent (770m)

achieves an overall performance of 49.22, which we attribute
to its balanced training data and the use of a sliding window
for longer action histories.

REACT demonstrates a noticeable improvement over SAY-
CAN for short and medium tasks, owing to its subgoal anno-
tations for in-context learning and the inclusion of ‘think’
actions. REFLEXION surpasses REACT in shorter tasks;
however, comparing REFLEXION with other agents is not
entirely fair. REFLEXION can run up to four rounds, while
the others are limited to one round. This discrepancy is
particularly unfair for tasks involving multiple-choice sce-
narios. Nevertheless, we include REFLEXION’s results to
analyze the potential of such methods.

Exception handling. Consider the example in Figure 2,
where the stove is broken, presenting an exception. Agents
like DRRN and TDT often resort to repeating meaningless
action sequences (e.g., continuously attempting to activate
the stove or moving between rooms aimlessly). Although
the SWIFT module, when used independently, improves
upon this due to its larger context window from imitation
learning, it still struggles to address exceptions robustly. Re-
Act and Reflexion occasionally utilize the ‘think’ action or
reflections to redirect agents towards alternative solutions,
but the generated actions rarely achieve the new subgoals
if they are not grounded. In contrast, the plan-and-ground
prompts in our SAGE module handle exceptions more effec-
tively.

Cost-effectiveness. Despite SAGE invoking LLMs APIs
twice for inference, its overall cost remains lower, as the
result is a sequence of actions typically containing about
5 actions. In comparison, SAYCAN and REACT require
1,855.84 and 1,971.03 tokens per action (tpa) respectively,
while REFLEXION necessitates 2,983.46 tpa. SWIFTSAGE,
on the other hand, only uses 757.07 tpa. Given its superior
performance, SWIFTSAGE proves more cost-effective than
other LLM-based methods. This efficiency is primarily
attributed to invoking LLMs only when needed (courtesy of
our strong SWIFT module) and the action buffer mechanism.

Efficiency. To thoroughly examine the efficiency of agents
across all task types, we use Figure 3 to visualize the aver-
age trajectories of the first three testing variations for each
task involving SWIFTSAGE, REACT, and the oracle agent.
We arrange the tasks based on their average lengths of or-
acle trajectories (*Len in Table 1). We observe that oracle
trajectories consistently achieve perfect scores, yet SWIFT-
SAGE can reach similar scores more efficiently. This is
particularly evident in longer tasks (the bottom two rows),
although SWIFTSAGE does not achieve a perfect score for
a few tasks (e.g., 9-2 and 1-3). Interestingly, we find that
REACT performs competitively in shorter tasks (e.g., 4-2

7

SwiftSage: A Generative Agent with Fast & Slow Thinking for Complex Interactive Tasks

Task Type *Len DRRN KGA2C CALM TDT SayCan ReAct Reflexion SwiftSage

1-1 (L) 107.7 3.52 0.0 0.0 0.71 33.06 3.52 4.22 97.04
1-2 (L) 78.6 3.52 0.0 0.0 0.44 10.39 13.70 10.61 87.04
1-3 (L) 88.9 0.0 4.0 0.0 3.88 3.88 7.78 7.78 72.78
1-4 (L) 75.2 0.0 0.0 0.0 0.55 0.37 9.88 0.92 100.0
2-1 (M) 21.4 6.56 6.0 1.0 6.16 26.37 7.19 5.92 99.17
2-2 (M) 35.2 5.50 11.0 1.0 6.43 8.03 6.10 28.59 88.17
2-3 (L) 65.0 6.0 4.0 1.0 19.87 17.41 22.37 22.37 95.73
3-1 (S) 13.6 12.0 7.0 5.0 40.55 52.14 56.0 100.0 88.67
3-2 (M) 20.8 9.0 4.0 7.0 14.26 22.50 54.33 17.45 55.33
3-3 (M) 25.6 9.05 4.0 2.0 10.16 99.56 76.19 72.54 71.90
3-4 (M) 29.0 9.52 4.0 2.0 21.65 47.76 88.81 70.22 77.86
4-1 (S) 14.6 15.0 18.0 10.0 41.93 22.87 26.67 64.93 100.0
4-2 (S) 8.8 45.0 44.0 54.0 55.76 58.18 80.0 87.27 100.0
4-3 (S) 12.6 21.67 16.0 10.0 27.82 20.87 53.33 16.42 91.67
4-4 (S) 14.6 19.17 15.0 8.0 47.15 31.43 27.50 100.0 100.0
5-1 (L) 69.5 8.0 6.0 2.0 6.89 9.92 9.06 7.33 74.59
5-2 (L) 79.6 14.29 11.0 4.0 11.86 13.93 18.57 13.0 93.93
6-1 (M) 33.6 15.77 17.0 3.0 15.10 47.81 51.04 70.35 49.40
6-2 (S) 15.1 26.67 19.0 6.0 15.70 39.26 58.89 70.67 100.0
6-3 (M) 23.0 10.37 4.0 3.0 5.25 19.72 40.74 15.77 91.48
7-1 (S) 7.0 50.0 43.0 6.0 30.0 80.0 60.0 100.0 95.0
7-2 (S) 7.0 50.0 32.0 10.0 8.43 67.50 67.50 84.37 85.0
7-3 (S) 8.0 33.33 23.0 4.0 8.34 50.0 50.0 83.0 93.33
8-1 (M) 40.0 21.0 5.0 4.0 3.86 20.91 27.67 2.58 89.0
8-2 (S) 16.3 8.0 10.0 0.0 8.0 16.0 8.0 8.0 68.50
9-1 (L) 97.0 10.0 4.0 0.0 2.53 21.94 40.50 50.63 75.0
9-2 (L) 84.9 10.0 4.0 3.0 14.66 32.26 44.0 100.0 70.0
9-3 (L) 123.1 10.0 4.0 2.0 9.12 13.67 41.0 70.62 60.0

10-1 (L) 130.1 16.80 11.0 2.0 1.51 67.53 25.70 50.90 92.30
10-2 (L) 132.1 17.0 11.0 2.0 1.29 59.45 16.80 23.69 77.60

Short 11.76 28.08 22.70 11.30 28.37 43.83 48.79 71.47 92.22
Medium 28.58 10.85 6.88 2.88 10.36 36.58 44.01 35.43 77.79
Long 94.30 8.26 4.92 1.33 6.11 23.65 21.07 30.17 83.0

Overall 49.26 15.56 11.37 5.07 14.66 33.82 36.43 45.34 84.68

Table 1. Results on the ScienceWorld benchmark. *Len is the average length of the oracle agent’s trajectories. We report performance
on three groups of *Len (short, medium, long). The last four methods use GPT-4 as the base LLM for prompting.

and 3-4), but most trajectories plateau at an intermediate
score and fail to reach 100.

More analysis. Due to page limit, we have to provide
further details and analysis in the appendix, including more
detailed analysis on cost-effectiveness and efficiency, addi-
tional case studies and abalation studies, sensitivity to LLM
choices, and an the evaluation of the SWIFT-only agent.

5. Conclusion
Contributions. We present SWIFTSAGE, a novel genera-
tive agent for complex interactive reasoning tasks, inspired
by the dual-process theory of human cognition. The frame-
work comprises two modules: SWIFT, responsible for fast

thinking, and SAGE, dedicated to slow thinking. The SWIFT
module is a smaller LM that mimics oracle agents’ behavior,
while the SAGE module focuses on prompting LLMs for
subgoal planning and action sequence grounding. Through
extensive experiments on 30 distinct tasks within the Sci-
enceWorld benchmark, SWIFTSAGE outperforms baseline
agents, achieving state-of-the-art performance, increased
efficiency, and reduced cost.

Implications. The success of SWIFTSAGE highlights the
potential for collaborative frameworks combining smaller
LMs and LLMs in complex reasoning tasks. Smaller
LMs can be trained more easily to recognize task-specific
and environment-specific patterns, fostering effective in-
distribution generalization. On the other hand, LLMs

8

SwiftSage: A Generative Agent with Fast & Slow Thinking for Complex Interactive Tasks

7-1 S 7-2 S 7-3 S 4-2 S 4-3 S 3-1 S

4-1 S 4-4 S 6-2 S 8-2 S 3-2 M 2-1 M

6-3 M 3-3 M 3-4 M 6-1 M 2-2 M 8-1 M

2-3 L 5-1 L 1-4 L 1-2 L 5-2 L 9-2 L

1-3 L 9-1 L 1-1 L 9-3 L 10-1 L 10-2 L

Figure 3. Visualizing trajectories of SWIFTSAGE, REACT and ORACLE. X: time steps (0 → T); Y : scores (0 → 100). Each figure
displays the merged trajectories of testing variations by an agent. Task IDs are bottom-right, and the ordering is based on *Len.

demonstrate remarkable zero-shot generalization abilities
and deliberate thinking, though grounding their outputs in
real-world environments remains challenging. We posit
that dual-process agents, harnessing the strengths of both
approaches, constitute a crucial step towards addressing
complex interactive reasoning tasks and building general AI
agents. We can regard SWIFTSAGE as a method of utilizing
LLMs as controllers or planners for decomposing complex
tasks and leveraging APIs/tools (Lu et al., 2023; Ge et al.,
2023; Shen et al., 2023; Schick et al., 2023).

Limitations. Our work has been evaluated solely within a
textual simulator, ScienceWorld, which supports a limited
set of actions and tasks compared to real-world situations.
Also, we did not implement any safeguards to prevent agents
from engaging in potentially hazardous actions that could
occur in the real world, such as picking up substances from a
blast furnace. We argue that one important future direction is
to develop a true open-ended environment, allowing agents
to interact with a much wider variety of actions and objects
to better emulate real-world scenarios. Besides, the use of
LLMs in SAGE may present scalability challenges, as LLMs
require significant computational resources and may not be
feasible in some settings. Future research should explore the
generalizability of SWIFTSAGE to other domains and the
potential for more lightweight approaches to slow thinking.

References
Ahn, M., Brohan, A., Brown, N., Chebotar, Y., Cortes, O.,

David, B., Finn, C., Gopalakrishnan, K., Hausman, K.,
Herzog, A., Ho, D., Hsu, J., Ibarz, J., Ichter, B., Irpan,
A., Jang, E., Ruano, R. J., Jeffrey, K., Jesmonth, S., Joshi,
N. J., Julian, R. C., Kalashnikov, D., Kuang, Y., Lee,
K.-H., Levine, S., Lu, Y., Luu, L., Parada, C., Pastor, P.,
Quiambao, J., Rao, K., Rettinghouse, J., Reyes, D. M.,
Sermanet, P., Sievers, N., Tan, C., Toshev, A., Vanhoucke,
V., Xia, F., Xiao, T., Xu, P., Xu, S., and Yan, M. Do
as i can, not as i say: Grounding language in robotic
affordances. In Conference on Robot Learning, 2022.

Ammanabrolu, P. and Hausknecht, M. J. Graph constrained
reinforcement learning for natural language action spaces.
In 8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net, 2020.

Ammanabrolu, P., Urbanek, J., Li, M., Szlam, A., Rock-
täschel, T., and Weston, J. How to motivate your dragon:
Teaching goal-driven agents to speak and act in fantasy
worlds. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, pp.
807–833, Online, 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.naacl-main.64.

Angeli, G., Johnson Premkumar, M. J., and Manning, C. D.
Leveraging linguistic structure for open domain infor-

9

SwiftSage: A Generative Agent with Fast & Slow Thinking for Complex Interactive Tasks

mation extraction. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pp. 344–
354, Beijing, China, 2015. Association for Computational
Linguistics. doi: 10.3115/v1/P15-1034.

Anthony, T., Tian, Z., and Barber, D. Thinking fast and
slow with deep learning and tree search. In Guyon, I.,
von Luxburg, U., Bengio, S., Wallach, H. M., Fergus, R.,
Vishwanathan, S. V. N., and Garnett, R. (eds.), Advances
in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5360–5370, 2017.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Larochelle, H., Ranzato,
M., Hadsell, R., Balcan, M., and Lin, H. (eds.), Advances
in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J. A.,
Horvitz, E., Kamar, E., Lee, P., Lee, Y. T., Li, Y.-F., Lund-
berg, S. M., Nori, H., Palangi, H., Ribeiro, M. T., and
Zhang, Y. Sparks of artificial general intelligence: Early
experiments with gpt-4. ArXiv preprint, abs/2303.12712,
2023.

Chen, D., Bai, Y., Zhao, W., Ament, S., Gregoire, J., and
Gomes, C. P. Deep reasoning networks: Thinking fast
and slow. ArXiv preprint, abs/1906.00855, 2019.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I. De-
cision transformer: Reinforcement learning via sequence
modeling. In Ranzato, M., Beygelzimer, A., Dauphin,
Y. N., Liang, P., and Vaughan, J. W. (eds.), Advances
in Neural Information Processing Systems 34: Annual
Conference on Neural Information Processing Systems
2021, NeurIPS 2021, December 6-14, 2021, virtual, pp.
15084–15097, 2021.

Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y.,
Fedus, W., Li, E., Wang, X., Dehghani, M., Brahma, S.,
Webson, A., Gu, S. S., Dai, Z., Suzgun, M., Chen, X.,
Chowdhery, A., Valter, D., Narang, S., Mishra, G., Yu,
A. W., Zhao, V., Huang, Y., Dai, A. M., Yu, H., Petrov, S.,
hsin Chi, E. H., Dean, J., Devlin, J., Roberts, A., Zhou,

D., Le, Q. V., and Wei, J. Scaling instruction-finetuned
language models. ArXiv preprint, abs/2210.11416, 2022.

Côté, M.-A., Kádár, Á., Yuan, X., Kybartas, B. A., Barnes,
T., Fine, E., Moore, J., Hausknecht, M. J., Asri, L. E.,
Adada, M., Tay, W., and Trischler, A. Textworld: A learn-
ing environment for text-based games. In CGW@IJCAI,
2018.

Ganapini, M. B., Campbell, M., Fabiano, F., Horesh, L.,
Lenchner, J., Loreggia, A., Mattei, N., Rossi, F., Srivas-
tava, B., and Venable, K. B. Thinking fast and slow in ai:
the role of metacognition. In International Conference
on Machine Learning, Optimization, and Data Science,
2021.

Ge, Y., Hua, W., Ji, J., Tan, J., Xu, S., and Zhang, Y. Ope-
nagi: When llm meets domain experts. arXiv, 2023.

He, J., Chen, J., He, X., Gao, J., Li, L., Deng, L., and Os-
tendorf, M. Deep reinforcement learning with a natural
language action space. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 1621–1630, Berlin, Ger-
many, 2016. Association for Computational Linguistics.
doi: 10.18653/v1/P16-1153.

Huang, W., Abbeel, P., Pathak, D., and Mordatch, I. Lan-
guage models as zero-shot planners: Extracting action-
able knowledge for embodied agents. In Chaudhuri, K.,
Jegelka, S., Song, L., Szepesvári, C., Niu, G., and Sabato,
S. (eds.), International Conference on Machine Learn-
ing, ICML 2022, 17-23 July 2022, Baltimore, Maryland,
USA, volume 162 of Proceedings of Machine Learning
Research, pp. 9118–9147. PMLR, 2022.

Kahneman, D. Thinking, Fast and Slow. 2011.

Kolve, E., Mottaghi, R., Han, W., VanderBilt, E., Weihs, L.,
Herrasti, A., Gordon, D., Zhu, Y., Gupta, A., and Farhadi,
A. AI2-THOR: An Interactive 3D Environment for Visual
AI. arXiv, 2017.

Lin, B. Y., Huang, C., Liu, Q., Gu, W., Sommerer, S., and
Ren, X. On grounded planning for embodied tasks with
language models. ArXiv preprint, abs/2209.00465, 2022.

Lu, P., Peng, B., Cheng, H., Galley, M., Chang, K.-W.,
Wu, Y. N., Zhu, S.-C., and Gao, J. Chameleon: Plug-and-
play compositional reasoning with large language models.
ArXiv preprint, abs/2304.09842, 2023.

Miech, A., Alayrac, J., Laptev, I., Sivic, J., and Zisser-
man, A. Thinking fast and slow: Efficient text-to-visual
retrieval with transformers. In IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2021, vir-
tual, June 19-25, 2021, pp. 9826–9836. Computer Vision
Foundation / IEEE, 2021. doi: 10.1109/CVPR46437.
2021.00970.

10

SwiftSage: A Generative Agent with Fast & Slow Thinking for Complex Interactive Tasks

Murugesan, K., Atzeni, M., Kapanipathi, P., Shukla, P.,
Kumaravel, S., Tesauro, G., Talamadupula, K., Sachan,
M., and Campbell, M. Text-based RL agents with com-
monsense knowledge: New challenges, environments and
baselines. In Thirty-Fifth AAAI Conference on Artificial
Intelligence, AAAI 2021, Thirty-Third Conference on In-
novative Applications of Artificial Intelligence, IAAI 2021,
The Eleventh Symposium on Educational Advances in Ar-
tificial Intelligence, EAAI 2021, Virtual Event, February
2-9, 2021, pp. 9018–9027. AAAI Press, 2021.

Nottingham, K., Ammanabrolu, P., Suhr, A., Choi, Y.,
Hajishirzi, H., Singh, S., and Fox, R. Do embodied
agents dream of pixelated sheep: Embodied decision
making using language guided world modelling. volume
abs/2301.12050, 2023.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright,
C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama, K.,
Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L. E.,
Simens, M., Askell, A., Welinder, P., Christiano, P. F.,
Leike, J., and Lowe, R. J. Training language models to
follow instructions with human feedback. ArXiv preprint,
abs/2203.02155, 2022.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring the
limits of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21:140:1–140:67, 2020.

Reed, S., Zolna, K., Parisotto, E., Colmenarejo, S. G.,
Novikov, A., Barth-Maron, G., Gimenez, M., Sulsky, Y.,
Kay, J., Springenberg, J. T., Eccles, T., Bruce, J., Razavi,
A., Edwards, A. D., Heess, N. M. O., Chen, Y., Had-
sell, R., Vinyals, O., Bordbar, M., and de Freitas, N. A
generalist agent. ArXiv preprint, abs/2205.06175, 2022.

Reimers, N. and Gurevych, I. Sentence-BERT: Sentence
embeddings using Siamese BERT-networks. In Pro-
ceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pp. 3982–3992, Hong Kong, China,
2019. Association for Computational Linguistics. doi:
10.18653/v1/D19-1410.

Schick, T., Dwivedi-Yu, J., Dessì, R., Raileanu, R., Lomeli,
M., Zettlemoyer, L., Cancedda, N., and Scialom, T. Tool-
former: Language models can teach themselves to use
tools. ArXiv preprint, abs/2302.04761, 2023.

Shen, Y., Song, K., Tan, X., Li, D. S., Lu, W., and Zhuang,
Y. T. Hugginggpt: Solving ai tasks with chatgpt and its
friends in huggingface. ArXiv preprint, abs/2303.17580,
2023.

Shinn, N., Labash, B., and Gopinath, A. Reflexion: an au-
tonomous agent with dynamic memory and self-reflection.
ArXiv preprint, abs/2303.11366, 2023.

Shridhar, M., Yuan, X., Côté, M., Bisk, Y., Trischler, A., and
Hausknecht, M. J. Alfworld: Aligning text and embodied
environments for interactive learning. In 9th International
Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenReview.net,
2021.

Song, C. H., Wu, J., Washington, C., Sadler, B. M., Chao,
W.-L., and Su, Y. Llm-planner: Few-shot grounded plan-
ning for embodied agents with large language models.
ArXiv preprint, abs/2212.04088, 2022.

Sutskever, I., Vinyals, O., and Le, Q. V. Sequence to se-
quence learning with neural networks. In Ghahramani,
Z., Welling, M., Cortes, C., Lawrence, N. D., and Wein-
berger, K. Q. (eds.), Advances in Neural Information
Processing Systems 27: Annual Conference on Neural
Information Processing Systems 2014, December 8-13
2014, Montreal, Quebec, Canada, pp. 3104–3112, 2014.

Torabi, F., Warnell, G., and Stone, P. Behavioral cloning
from observation. In Lang, J. (ed.), Proceedings of the
Twenty-Seventh International Joint Conference on Arti-
ficial Intelligence, IJCAI 2018, July 13-19, 2018, Stock-
holm, Sweden, pp. 4950–4957. ijcai.org, 2018. doi:
10.24963/ijcai.2018/687.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need. In Guyon, I., von Luxburg, U., Bengio,
S., Wallach, H. M., Fergus, R., Vishwanathan, S. V. N.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pp. 5998–6008, 2017.

Wang, R., Jansen, P., Côté, M.-A., and Ammanabrolu, P.
ScienceWorld: Is your agent smarter than a 5th grader? In
Proceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 11279–11298,
Abu Dhabi, United Arab Emirates, 2022. Association for
Computational Linguistics.

Wang, Z., Cai, S., Liu, A., Ma, X., and Liang, Y. Describe,
explain, plan and select: Interactive planning with large
language models enables open-world multi-task agents.
ArXiv preprint, abs/2302.01560, 2023a.

Wang, Z., Zhang, G., Yang, K., Shi, N., Zhou, W., Hao, S.,
Xiong, G., Li, Y., Sim, M. Y., Chen, X., Zhu, Q., Yang,
Z., Nik, A., Liu, Q., Lin, C., Wang, S., Liu, R., Chen, W.,
Xu, K., Liu, D., Guo, Y., and Fu, J. Interactive natural
language processing. ArXiv, 2023b.

11

SwiftSage: A Generative Agent with Fast & Slow Thinking for Complex Interactive Tasks

Wason, P. C. and Evans, J. S. B. Dual processes in reason-
ing? Cognition, 3(2):141–154, 1974.

Yao, S., Rao, R., Hausknecht, M., and Narasimhan, K.
Keep CALM and explore: Language models for ac-
tion generation in text-based games. In Proceedings of
the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 8736–8754, Online,
2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.emnlp-main.704.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K., and Cao, Y. React: Synergizing reasoning and acting
in language models. ArXiv preprint, abs/2210.03629,
2022.

12

SwiftSage: A Generative Agent with Fast & Slow Thinking for Complex Interactive Tasks

Appendix

A. Limitations
Our work has been evaluated solely within a textual simula-
tor, ScienceWorld, which supports a limited set of actions
and tasks compared to real-world situations. Also, we did
not implement any safeguards to prevent agents from en-
gaging in potentially hazardous actions that could occur in
the real world, such as picking up substances from a blast
furnace. We argue that one important future direction is to
develop a true open-ended environment, allowing agents to
interact with a much wider variety of actions and objects
to better emulate real-world scenarios. Besides, the use of
LLMs in SAGE may present scalability challenges, as LLMs
require significant computational resources and may not be
feasible in some settings. Future research should explore the
generalizability of SWIFTSAGE to other domains and the
potential for more lightweight approaches to slow thinking.

B. Dataset Statistics
Table 2 presents the details of all 30 types of tasks in the Sci-
enceWorld benchmark. To improve the training of SWIFT,
we down-sampled Task 9-x, 10-x, and 3-3 from the original
full dataset, as their large sizes resulted in a significant data
imbalance. Additionally, we down-sampled less informative
actions, such as ‘close door to kitchen,’ to produce a more
effective dataset for imitation learning.

Evaluation. To save time while evaluating the numerous
tasks and agents, we only used the first 10 variations for
tasks with more than 10 test variations. This resulted in a to-
tal of 270 variations for fair and cost-effective comparisons
among all agents. Some agents may receive a negative score
from the engine and be unable to proceed any further due
to their final action violating task requirements and being
irrecoverable. In such cases, we used their last non-negative
scores for evaluation.

C. Implementation Details
C.1. Training Details of SWIFT

We utilized flan-t5-large (770m) as the base model
and fine-tuned it using the seq2seq action-prediction data
(62k) as previously described. A learning rate of 1e-4 and
batch size of 128 were employed for training 500 steps,
selected based on dev loss. Although we experimented with
larger sizes of flan-t5 models, we observed only marginal im-
provements at a much higher training cost. We believe this
is because the language used to describe the environment
and actions covers a small vocabulary, and the language
complexity does not warrant the use of more parameters.

C.2. Prompting in SAGE

In Section 3.3, we provided an overview of the two-stage
prompting framework: planning and grounding. In this
section, we delve into further details of each stage.

Memory augmentation. Since the agent can only per-
ceive objects in its current environment location, objects
from previously visited locations are not displayed unless a
prior ‘look around’ action has been executed. To augment
memory for LLMs during planning and grounding, we also
present the objects observed in previously visited locations.
Additionally, we include the agent’s location during each ac-
tion in the action history, e.g., “pick up metal pot [location:
kitchen],” to facilitate spatial reasoning for LLMs.

Connecting the two stages. We conveniently reuse the
LLM output from the first stage (i.e., answers to Q1-Q5)
as part of the input for the second stage. Our experiments
involve using answers to all questions in the grounding stage.
However, one can opt to use only answers to Q4 and Q5
to reduce computational costs. Our small-scale ablation
study indicates that incorporating answers to Q1-Q3 in the
grounding stage proves beneficial, yielding a gain of about
2 points for short tasks on average.

Grounding with action templates. We previously intro-
duced an action template, ‘POUR(object A, object B)’, in
Figure 2. Here, we present several additional templates to
further illustrate the concept:

TELEPORT(room) : directly go to a room such as
TELEPORT(kitchen)

PICK(object) : pick up an object and put it into
your inventory

OPEN(object) : open an object to search or put
things in it, e.g., OPEN(freezer).

ACTIVATE(object) : activate / turn on an object
such as sink or stove, so that you can use it.

DEACTIVATE(object) : deactivate / turn off the
object

EXAMINE(object) : look at an object carefully. For
example, EXAMINE(light bulb).

MOVE(object, place) : move/place the object to
a place

It should be noted that despite explicitly instructing the LLM
to only utilize permitted action types, it may occasionally
generate actions of disallowed types that cannot be parsed.
These invalid actions will be disregarded in the action buffer,
and if necessary, the system will revert to the SWIFT mode.

13

SwiftSage: A Generative Agent with Fast & Slow Thinking for Complex Interactive Tasks

Task Type Topic Name *Lens #Vars: Train Dev Test # Actions

1-1 Matter Changes of State (Boiling) 107.7 14 7 9 694
1-2 Matter Changes of State (Melting) 78.6 14 7 9 427
1-3 Matter Changes of State (Freezing) 88.9 14 7 9 469
1-4 Matter Changes of State (Any) 75.2 14 7 9 344

2-1 Measurement Use Thermometer 21.4 270 10 10 4278
2-2 Measurement Measuring Boiling Point (known) 35.2 218 10 10 6511
2-3 Measurement Measuring Boiling Point (unknown) 65 150 10 10 9768

3-1 Electricity Create a circuit 13.6 10 5 5 94
3-2 Electricity Renewable vs Non-renewable Energy 20.8 10 5 5 169
3-3 Electricity Test Conductivity (known) 25.6 48 10 10 1341
3-4 Electricity Test Conductivity (unknown) 29 300 10 10 6974

4-1 Classification Find a living thing 14.6 150 10 10 1606
4-2 Classification Find a non-living thing 8.8 150 10 10 756
4-3 Classification Find a plant 12.6 150 10 10 1458
4-4 Classification Find an animal 14.6 150 10 10 1606

5-1 Biology Grow a plant 69.5 62 10 10 3675
5-2 Biology Grow a fruit 79.6 62 10 10 4283

6-1 Chemistry Mixing (generic) 33.6 16 8 8 347
6-2 Chemistry Mixing paints (secondary colours) 15.1 18 9 9 224
6-3 Chemistry Mixing paints (tertiary colours) 23 18 9 9 350

7-1 Biology Identify longest-lived animal 7 62 10 10 298
7-2 Biology Identify shortest-lived animal 7 62 10 10 298
7-3 Biology Identify longest-then-shortest-lived animal 8 62 10 10 360

8-1 Biology Identify life stages (plant) 40 6 3 5 165
8-2 Biology Identify life stages (animal) 16.3 4 2 4 31

9-1 Forces Inclined Planes (determine angle) 97 24 10 10 2733
9-2 Forces Friction (known surfaces) 84.9 26 10 9 3644
9-3 Forces Friction (unknown surfaces) 123.1 23 10 10 3284

10-1 Biology Mendelian Genetics (known plants) 130.1 26 10 10 3043
10-2 Biology Mendelian Genetics (unknown plants) 132.1 24 10 10 2853

Short (0 < *Len ≤ 20) 11.76 81.80 8.6 8.80 673.10
Medium (20 < *Len ≤ 50) 28.58 110.75 8.13 8.38 2516.88

Long (*Len > 50) 94.30 37.75 9.00 9.58 2934.75

Overall (avg) 49.26 71.90 8.63 9 2069.43
Overall (sum) N/A 2,157 259 270 62,083

Table 2. The statistics of ScienceWorld benchmark. *Len is the average length of the oracle agent’s trajectories. We show the number
of our down-sampled variations in each split. The last column is the number of data points forr action-prediction seq2seq task in training
SWIFT.

C.3. Action Buffer

In Section 3.4, we presented four conditions for activating
the SAGE module. To detect critical decisions (Condition
3), we primarily focus on the ‘focus on’ actions, as many
tasks in ScienceWorld necessitate agents to concentrate on
the correct substances and objects in the proper sequence.
A single incorrect ‘focus on’ action can terminate the entire
run. Thus, we restrict the SWIFT module from performing
such actions if SAGE has not yet been activated.

For identifying exceptions (Condition 4), we examine
phrases like “No known action can match,” “... can-
not/doesn’t...,” and so on. When processing an action buffer,

we attempt to execute each action sequentially. If two con-
secutive actions are invalid or cause exceptions, we halt and
revert to SWIFT.

D. Additional Results and Analysis
D.1. Sensitivity to LLMs: GPT-3.5-turbo vs GPT-4

Besides the empirical results in Table 1, we also evaluate
performance using GPT-3.5-turbo instead of GPT-4, which
is considerably larger and more expensive. Other methods
exhibit a significant performance decline, for instance, Re-
Act’s score drops from 36.43 to 19.76, which is close to
non-LLM methods and even lower than the vanilla method,

14

SwiftSage: A Generative Agent with Fast & Slow Thinking for Complex Interactive Tasks

SayCan. In contrast, SWIFTSAGE maintains a respectable
performance of 62.22, indicating better robustness.

As discussed in Sec. 5 (limitations), we plan to utilize other
open-source LLMs, such as Alpaca, and investigate distill-
ing the planning ability from closed-source LLMs to open-
source and smaller LMs. Nevertheless, a practical challenge
arises due to the current open-source LLMs having more
restrictive length limits for inputs and outputs.

D.2. Efficiency Analysis

Figure 4 illustrates that most of SWIFTSAGE’s curves are
situated near the top-left corner, indicating that SWIFTSAGE
attains higher scores than oracle agents at a faster rate. Al-
though ReAct is competitive with our method for shorter
tasks, its trajectories typically plateau at intermediate scores
and do not reach 100. While the ORACLE agent consistently
achieves a perfect score (100.0), its efficiency, particularly
in longer tasks, is often outperformed by SWIFTSAGE.

D.3. Cost-effectiveness

Table 4 presents a comprehensive analysis of the cost-
effectiveness of LLM-based methods. We examine two
specific metrics: tokens per action (tpa) and scores per ac-
tion (spa) for SayCan, ReAct, Reflexion, and SWIFTSAGE
across all tasks. Despite SAGE invoking LLM APIs twice
for inference, its overall cost remains lower, as the result
is a sequence of actions typically containing about 5 ac-
tions. In contrast, SAYCAN and REACT require 1,855.84
and 1,971.03 tokens per action (tpa) respectively, while
REFLEXION necessitates 2,983.46 tpa. SWIFTSAGE, how-
ever, only uses 757.07 tpa. Given its superior performance,
SWIFTSAGE proves to be more cost-effective than other
LLM-based methods. This efficiency primarily stems from
invoking LLMs only when necessary (thanks to our robust
SWIFT module) and the action buffer mechanism.

Interestingly, we observe that SWIFTSAGE has an even
lower tpa for long tasks compared to its tpa in medium
and short tasks. Upon further investigation, we attribute
this finding to longer action buffers and the SWIFT module
being more frequently effective. Additionally, regarding
scores per action (spa), we discover that our SWIFTSAGE is
more cost-effective by utilizing fewer tokens and achieving
higher scores.

15

SwiftSage: A Generative Agent with Fast & Slow Thinking for Complex Interactive Tasks

Task Type Swift-Only SayCanChatGPT ReActChatGPT ReflexionChatGPT SwiftSageChatGPT

1-1 15.0 0.0 0.4 0.7 58.0
1-2 24.4 0.0 8.5 0.0 58.5
1-3 32.2 0.0 1.1 0.0 38.5
1-4 57.4 0.0 0.6 0.0 62.5
2-1 9.4 1.7 4.1 2.2 47.9
2-2 6.7 14.1 7.2 2.5 53.3
2-3 5.7 93.7 19.6 14.7 48.6
3-1 70.0 19.3 16.7 20.0 72.7
3-2 48.3 8.7 9.7 8.6 50.3
3-3 59.5 22.0 55.5 6.4 66.9
3-4 69.0 36.4 36.4 30.1 78.1
4-1 100.0 11.7 17.5 46.5 100.0
4-2 100.0 76.0 73.3 68.2 97.5
4-3 94.4 11.4 20.0 19.9 58.3
4-4 100.0 9.5 15.8 41.0 100.0
5-1 13.4 11.3 11.1 5.8 57.5
5-2 44.6 75.0 18.8 47.6 50.9
6-1 26.2 13.5 35.0 22.4 43.2
6-2 53.3 25.0 20.0 10.0 63.3
6-3 11.1 58.4 16.7 40.0 27.4
7-1 83.3 75.0 37.5 75.0 75.0
7-2 100.0 100.0 50.0 75.0 60.0
7-3 77.8 31.7 31.7 28.1 68.3
8-1 33.0 5.6 4.2 2.8 75.6
8-2 8.0 12.8 7.0 8.2 33.0
9-1 73.3 38.0 28.5 100.0 54.0
9-2 73.3 4.2 10.0 17.5 63.3
9-3 53.3 0.0 0.0 1.7 77.0

10-1 17.0 1.3 24.5 1.3 76.0
10-2 17.0 0.3 11.7 6.0 51.1

Short 78.68 37.24 28.95 39.19 72.81
Medium 32.90 20.06 21.09 14.37 55.34
Long 35.55 18.66 11.23 16.27 57.99

Overall 49.22 25.22 19.76 23.40 62.22

Table 3. Additional results on the ScienceWorld benchmark. Different from Table 1, we use gpt-3.5-turbo instead of gpt-4 as
the LLM for evaluating SayCan, ReAct, Relfexion, and our SWIFTSAGE. We also present the results of using SWIFT module only.

16

SwiftSage: A Generative Agent with Fast & Slow Thinking for Complex Interactive Tasks

Figure 4. An overview of visualizing trajectories of SWIFTSAGE, REACT and ORACLE. X: time steps (0 → T); Y : scores (0 → 100).
Similar to Figure 3, each curve is a single trajectory by an agent in performing a task variation. A more efficient agent will achieve higher
scores in a shorter time, resulting in curves positioned near the top-left corner.

17

SwiftSage: A Generative Agent with Fast & Slow Thinking for Complex Interactive Tasks

Average number of tokens per action (tpa) Average scores per action (spa)

Task Type SayCan ReAct Reflexion SwiftSage SayCan ReAct Reflexion SwiftSage

1-1 1944.94 1503.60 2632.97 528.17 0.10 0.05 0.00 1.49
1-2 1125.76 1339.39 3066.70 545.34 0.08 0.13 0.01 1.64
1-3 1034.33 1268.23 3307.30 550.17 0.04 0.13 0.00 0.71
1-4 1295.03 1251.45 2439.34 754.05 0.00 0.09 0.00 1.69
2-1 1188.46 1545.03 1988.59 494.52 0.13 0.06 0.00 3.01
2-2 1862.11 1181.88 1596.03 394.29 0.03 0.25 0.15 2.32
2-3 939.17 1358.33 1753.17 574.05 0.73 0.93 0.12 1.71
3-1 1713.64 1846.91 2677.89 807.62 0.49 0.44 0.04 0.49
3-2 1785.01 1754.14 2337.02 823.28 0.21 0.22 0.01 0.31
3-3 1762.13 2441.79 2262.39 220.80 0.53 0.18 0.10 0.84
3-4 1698.85 1195.59 2859.30 287.25 0.18 1.93 0.10 1.13
4-1 411.08 579.70 1053.57 309.14 1.91 1.16 0.34 4.76
4-2 1332.83 1098.69 1250.37 298.48 0.20 0.69 0.47 4.76
4-3 1155.99 1314.74 2966.82 406.17 0.08 0.39 0.02 3.82
4-4 1126.67 591.15 1003.18 309.71 0.24 1.02 0.79 4.76
5-1 2323.43 2620.66 5091.49 168.95 0.02 0.02 0.00 0.22
5-2 2646.50 2575.11 5864.93 536.56 0.03 0.13 0.00 0.75
6-1 1454.65 1802.62 2344.90 1388.89 0.28 0.25 0.04 0.37
6-2 2413.99 2763.66 4342.07 402.50 0.18 0.14 0.02 3.33
6-3 1371.50 2860.68 4551.96 6361.79 0.09 0.10 0.00 0.59
7-1 376.50 495.83 813.08 768.63 5.71 3.33 0.77 11.88
7-2 424.53 478.09 1180.58 772.00 2.11 6.14 0.36 10.63
7-3 424.73 564.69 1175.35 609.73 4.55 3.85 0.24 8.48
8-1 1505.39 1155.71 2466.59 249.38 0.21 0.79 0.00 2.23
8-2 3189.80 741.71 2886.09 2479.00 0.12 0.47 0.02 4.03
9-1 2066.06 2642.79 2652.56 307.30 0.16 0.14 0.08 1.06
9-2 2517.48 3031.95 3606.60 314.19 0.11 0.14 0.05 0.66
9-3 7002.72 7507.00 7785.29 366.06 0.04 0.18 0.04 0.65

10-1 3612.33 4218.44 4822.97 466.21 0.32 0.36 0.13 1.78
10-2 3969.62 5401.37 6724.81 218.00 0.52 0.10 0.01 1.69

Short 1256.98 1047.52 1934.90 716.30 1.56 1.76 0.31 5.69
Medium 1578.51 1742.18 2550.85 1277.52 0.21 0.47 0.05 1.35
Long 2539.78 2893.19 4145.68 444.09 0.18 0.20 0.04 1.17

Overall 1855.84 1971.03 2983.46 757.07 0.65 0.79 0.13 2.73

Table 4. Cost-effectiveness analysis for LLM-based methods.

18

