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Abstract

We study a setting in which an active meta-learner
aims to separate the idiosyncracies of a particular
task environment from information that will trans-
fer between task environments. In a Bayesian set-
ting, this is accomplished by leveraging a prior dis-
tribution on the amount of transferable and task-
specific information an observation will yield, in-
ducing a large dependency on this prior when data
is scarce or environments change frequently. How-
ever, a misspecified prior can lead to bias in the
inferences made on the basis of the resulting poste-
rior — i.e., to the acquisition of non-transferable
information. For an active meta-learner, this poses
a dilemma: should they seek transferable infor-
mation on the basis of their possibly misspeci-
fied prior beliefs, or task-specific information that
enables better identification of the current task
environment? Using the framework of Bayesian
experimental design, we develop a novel diag-
nostic to detect the risk of non-transferable in-
formation acquisition, and leverage this diagnos-
tic to propose an intuitive yet principled way to
navigate the meta-learning dilemma — namely,
seek task-specific information when there is risk
of non-transferable information acquisition, and
transferable information otherwise. We provide a
proof-of-concept of our approach in the context
of an experiment with synthetic participants.

1. Introduction

Most theoretical results in machine learning assume learn-
ing algorithms have access to substantial amounts of data
from the environments in which they will be deployed. Yet
the daunting task in the settings faced by many algorithms in
practice is to bootstrap very little data from several different
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task environments to make robust predictions in new envi-
ronments. This is the problem of transfer or meta-learning1 s
a paradigm in which the learner’s goal is to perform well
in multiple different, but related, task environments (Pan &
Yang, 2009; Kveton et al., 2021; Simchowitz et al., 2021).
In the specific setting we study, each task environment the
learner will encounter is characterized by both transferable
effects (i.e., parameter values that are constant across task
environments) and task-specific effects (i.e., parameter val-
ues that vary between task environments). The goal of the
meta-learner is then to disentangle the transferable from the
task-specific effects.

Our work is especially motivated by the paradigm of learn-
ing with human feedback: algorithms that rely on expert
feedback, or “human-in-the-loop learning,” are inherently
constrained by limitations in the time, attention and knowl-
edge of a given expert. While bringing multiple humans
into the loop can overcome these limitations, eliciting feed-
back from more than one expert requires that the learner
disentangle transferable knowledge shared between experts
from the biases and idiosyncracies of each.

Bayesian learning algorithms, which use prior information
to make robust inferences in data-scarce settings, are a natu-
ral paradigm for such problems (Simchowitz et al., 2021).
We analyze the setting of Bayesian meta-learning under
prior misspecification: a learner specifies a prior distribu-
tion across a parameter space that includes both transferable
and task-specific parameters, and this prior can diverge from
the true parameter distribution. We leverage the framework
of Bayesian experimental design (Rainforth et al., 2023;
Valentin et al., 2023) to quantify the amount of information
gained about the value of a transferable parameter. To the
best of our knowledge, we are the first to use the framework
of Bayesian experimental design to analyze the general set-
ting of Bayesian meta-learning under prior misspecification
(although related work has studied it for special cases; see
Section 4). As we show in Section 1, misspecified prior
information about the task-specific characteristics of a given
task environment can affect the degree of transferable infor-
mation (information that will transfer to new environments)

'We use the convention that definitions in italics refer to terms
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Figure 1. Problem setup. The value 6 of the transferable parameter
is shared across tasks, while the value of the task-specific parameter
1) differs between tasks. The goal of the active meta-learner is to
learn to take effective actions in the target task by actively eliciting
data from the source task in order to maximize the information
gained about the value of 6.

a learner can acquire. In some cases, misspecified priors can
even lead to non-transferable information acquisition, or
to evidence in favor of the wrong transferable parameter
value.

Contributions. In this paper, we leverage a Bayesian
experimental design framework to analyze the setting of
Bayesian meta-learning under prior misspecification. We
introduce the meta-learning dilemma: should an active meta-
learner seek transferable information on the basis of their
possibly misspecified prior beliefs, or task-specific informa-
tion that enables better identification of the current task en-
vironment? We introduce a credible lower bound on a mea-
sure of expected transferable information gain (CLBgT1G),
and demonstrate its use as a diagnostic of the risk of non-
transferable information acquisition. We then demonstrate
an application of CLBgri¢ in the design of a Bayesian
active learning algorithm for navigating the meta-learning
dilemma.

Setting. Our setup is summarized in Figure 1. The meta-
learner can take actions x € X. Each action results in
an outcome that can take values y € Y, which follows a
distribution determined by x and the value w € Q of a set
of unobservable parameters. (2 is partitioned into a set of
transferable parameters 6 € © and a set of task-specific
parameters ) € W. The values of the transferable param-
eters are stable across task environments, while the values
of the task-specific parameters differ in each environment
the learner will encounter. The learner’s goal is to identify
the true value of 8, which we denote 6*. In each task that
the learner encounters, a value of 1 is drawn independently
at random from a true distribution that characterizes the
population of tasks. Together, a value (x, 6, ) induces a
distribution over outcomes p(y | x, 6, ). This conditional
distribution is assumed to be known to the learner.

However, the learner does not have access to the value 6*
or to the true distribution of v, and so assigns to it a prior
distribution p(0,1). We will hereafter use ¢ to refer to
probability density functions induced by the true population
distribution of 1, which is unavailable to the learner. We
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Figure 2. A misspecified prior can lead to non-transferable infor-
mation acquisition. Under the learner’s prior (dashed line), values
of v are concentrated in the upper half of the y-axis, and large
values of y occur most frequently when 6 is large. Under the true
distribution (solid line), values of v are concentrated in the lower
half of the y-axis. If the learner had access to this prior, they would
consider observations of large values of y as indicative of a small
value of 6.

reserve p to refer to density functions used internally by
the learning algorithm. The true distribution over outcomes
induced by marginalizing over the parameter space can be
written as q(y | z) == [, p(y | ©,0%,%) q(¢ | 6%). The
learner’s expectations of the distribution over outcomes is

p(yla) = fo [opy|2,0,9)p(|0)p().

After observing an action—outcome pair (z, y), the learner

updates the probability distribution p(6, ) according to

Bayes’ rule, i.e., p(0,¢ | y, x) = ply | 2.0%) p(0.¢) “;’(Z“‘l’)mg’(e’w)

Meta-learning dilemma. To see how misspecification of
the prior over 1) can lead to non-transferable information
acquisition, consider the toy example shown in Figure 2.
The shading shows the probability y = 1 | z under different
values of 6 and 1. The dashed line shows a particular prior
distribution one could place on 1. Under this prior, if the
learner observes y = 1 | z, this is considered evidence for a
relatively high value of 6. Conversely, if the learner observes
y = 0| z, this is considered evidence for a relatively low
value of . However, if the true distribution over % is in fact
characterized by the solid line, these observations would
instead be indicative of a relatively low (high) value of 6. In
other words, the effect of misspecification over ¥ is to lead
to initial convergence on a non-transferable value of 6.

This example highlights a trade-off between learning task-
specific and transferable information. Failing to invest re-
sources in learning about ¢ would lead to wrong inferences
about #. Yet if the learner invests too many resources in
learning about v, they will not learn any information that
will transfer to a new environment. This presents the learner
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with a meta-learning dilemma which requires striking a
balance between seeking transferable and task-specific in-
formation.

2. Sequential optimal experimental design

Sequential optimal experimental design (SOED) is an active
learning paradigm in which the input z is selected to max-
imize the mutual information between the observations it
induces y | x, and the value of parameters w. SOED lever-
ages the Bayesian modeling framework to define the mutual
information measure, or expected information gain (EIG)
associated with a possible input:

pw|y,x
EIG(2) = Eyupw) [Eyw(y | 2,w) {103 (l)H

p(w)

p(y | z,w)
p(y | =)

Information gain

=E E log

wrp(w) y~p(y | z,w)

ey

Notice that the EIG is necessarily a function of the learner’s
prior p(y | z,w), since the true distribution ¢(y | z,w) is
unavailable in practice.

: pwl|yx) _ py | zw)
We refer to the inner term log ) = log 25T %)

as the information gain about w: it is positive when w is
more likely under the posterior p(w | y, «) than under the
corresponding prior p(w).

2.1. Expected Transferable and Task-specific
Information Gain

The meta-learner’s goal is to maximize information gain
about the transferable parameters 6. The more general set-
ting of targeting inference at a subset of the parameters is
referred to as the estimation of nuisance parameters (Foster
et al., 2019) or of an embedded model (Rainforth et al.,
2023).

We here distinguish this case by referring to the expected
information gain measure computed with respect to 6 as the
expected transferable information gain (ETIG):

x,0
ETIG(z) = Egpo) {Eyw(y | ,0) [log %”
ply|z,0)
p(y | x)

Transferable Information Gain

(@)

where p(y | 2,0) = Eypep o) [Py | z,0,4)]. This is
not usually known in closed form, and so evaluating Equa-

=Egynpo,0) |Eymply | 2,00 log

tion (2) requires estimation of an implicit likelihood (Foster
et al., 2019).

In the same way that we refer to the information gain of a
particular set of values (y | ,w), we also refer to the trans-
ferable information gain (TIG) of a set of values (y | x, 0).
The TIG, or log % = log %, is the amount an
observation y |  increases the learner’s beliefs in the value
0. The interpretation parallels that of the information gain in
the context of the EIG: TIG is positive when 6 is more likely
under the posterior p(f | y, ) than under the corresponding
prior p(6).

We define the task-specific information gain and expected
task-specific information gain analogously, i.e., as the
information an observation provides about a value 1 and
as the learner’s expectation of the task-specific information
gain across their prior, respectively:

p(y | x,w)]'
ETSIG(z) = Eypis) |Bypy | 20 |10g — bl
(x) prp(9h) { y~p(y | z,7)) [ p(y | z)
ply |z, ¢)
=Eo.prp0.0) |Eyopy | 2.0 log 210 )
Wprp(0,4) | y~p(y | ©,0,1) p(y | z)
Task-specific Information Gain | |

3)

3. Sequential optimal experimental design for
meta-learning

We now leverage the sOED framework to make more pre-
cise the nature of the meta-learning dilemma and develop
tools to navigate it. Section 3.1 introduces the concept of
actual information gain, which will allow us to formalize the
concepts of transferable vs. non-transferable information
acquisition. Section 3.2 introduces a novel diagnostic for
detecting the risk of non-transferable information acquisi-
tion. Section 3.3 introduces an application of this diagnostic
to the construction of an SOED method to trade-off between
seeking transferable and task-specific information in a prin-
cipled way. Section 3.4 gives details of a method to estimate
the ETIG and ETSIG. Section 5 will then combine these
components to provide a proof-of-concept implementation
of our proposed approach to navigating the meta-learning
dilemma in the context of an experiment designed to learn
transferable information from the behavior of several syn-
thetic participants.

3.1. Transferable vs. non-transferable information

EIG and ETIG give the expectation of the relevant infor-
mation gain measure under the learner’s prior. In the case
of prior misspecification, these may diverge from the ac-
tual average information gain the learner would achieve in
multiple task environments drawn from the true distribution.
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This motivates our measure of actual information gain
(AIG):

p(y | z,w
AlG(z) = Eyng(w) {Eyw(y | 2w) {10% (I)”

p(y | =)
4

which differs from the EIG (Equation (1)) in that the outer
distribution ¢(w, y | x) is the true distribution.

Equation (4) can be rewritten as

AIG(7) = Eynyg(w) [Dxr (q(y | 2,0) [ p(y | 7)) —
Dk (q(y | z,w) [ p(y | z,w))] (5)

The derivation of Equation (5) is given in Appendix A.
This can yield insights into when the learner should expect
gains in transferable information even under prior misspec-
ification: in the case where the likelihood is known, the
term Dy, (¢(y | z,w) || p(y | z,w)) is zero, and the AIG re-
duces to an expectation over a Kullback-Leibler divergence
and thus must be non-negative — indicating acquisition of
transferable information.

Like the EIG, the AIG can be straightforwardly extended to
the meta-learning case. The Actual Transferable Informa-
tion Gain (ATIG) is

x,0
ATIG(JJ) = ngq(g) |:Ey~q(y | ,0) l:]og p(y|):|:|

p(y | z)
= Egq0) [Dkr (q(y | z,0) [| p(y | 7)) —
DKL (Q(y |‘T70) ||p(y |$,9))] (6)

Here, the likelihood p(y | x,8) can also be misspecified:
Ei/) ~q(v¢ | 0) [Q(y | 5579»1/1)] = EU) ~q(y | 0) [p(y | T, 03’1/))]2
is not necessarily equal to Ey 4 |0 [p(y | 2,0,1)].
Thus, unlike in the standard case, the second term inside
the expectation (here, Dk, (¢(y | z,0) || p(y | x,0))) does
not drop out, yielding no general guarantees about the sign
of the ATIG. In other words, a learner operating under a
misspecified prior may acquire evidence for the wrong value
of the transferable parameter. We refer to this as acquiring
non-transferable (as opposed to transferable) informa-
tion. The sign of the ATIG can be interpreted as an indicator
of whether the learner is acquiring transferable (positive
ATIG) or non-transferable (negative ATIG) information.

Equation (6) also reveals the nature of the dilemma
the meta-learner faces: not only are they tasked
with identifying designs that lead each transferable pa-
rameter value to make distinct predictions (maximiz-
ing Dkr, (¢(y | z,0) || p(y | ))), but simultaneously with
learning what those predictions are in the first place (mini-
mizing Dr, (q(y | z,0) || p(y | z,0))).

>The equality follows since the distribution ¢(y | z,w) is, by
assumption, available to the learner.

3.2. ETIG credible lower bound

Of course, the learner does not have access to the true distri-
bution and so cannot compute the ATIG. Here, we introduce
the ETIG credible lower bound (CLBgT1¢), a diagnostic
that can be computed without knowledge of the true distri-
bution but which can nevertheless indicate when the learner
may be in danger of acquiring non-transferable information.

Notice that the ETIG (Equation (2)) and ATIG (Equation (6))
are both written as an expectation over the TIG, where the
ETIG is evaluated by computing the expectation with re-
spect to the learner’s prior p, and the ATIG is evaluated by
computing the expectation with respect to the true distribu-
tion ¢. In other words, both can be estimated by computing
the TIG corresponding to a sufficiently large number of
combinations (6, y | z) and then taking an average weighted
by the appropriate distribution. Given infinite samples of
(0, y | «) and the corresponding TIG values, one of these
samples would correspond to the actual (as yet undeter-
mined) future observation y | x and true parameter value 6*.
The corresponding TIG value, which we refer to as TIG*,
would indicate the amount of transferable information gain
the learner would obtain after collecting their data. Quan-
tifying the risk of non-transferable information acquisition
then amounts to determining how likely it is that TIG* is
negative.

The intuition behind our approach is to leverage the empir-
ical distribution of TIG values that the learner computes
to estimate the ETIG in order to additionally compute a
credible lower bound on the value of TIG*. The ETIG is
estimated as the mean of this empirical distribution of TIG
values, and the ETIG credible lower bound (CLBgT1g)
can be interpreted as the lower bound of a credible interval
constructed around that mean. If the value of CLBgTi¢ at a
particular value of x is negative, that indicates that collecting
observations induced by x poses a risk of non-transferable
information acquisition.

More specifically, the CLBgTic is computed as:

ply | =, 9)}

CLBE 1G\T =E T T [log
116(2) = Boy | empoy 1) 1087 05

,0
_ ﬂ\/\/arg,y | z2~p(0,y | z) [log M] @

The margin 5 determines the size of the credible interval:
larger margins will lead to lower CLBgTi¢ values, i.e., a
lower implied risk tolerance for non-transferable informa-
tion acquisition. Section 3.3 discusses methods for selecting
[ in the context of our proposed algorithm.

We here briefly discuss how CLBgT1G connects to existing
measures and frameworks for similar problems.
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Interpretation as an exploration penalty. Related to
the meta-learning dilemma is the exploration—exploitation
dilemma, where online learners face a trade-off between
exploiting (possibly misspecified) prior information about
high-valued actions and exploring to gather observations
that will refine this prior information. In the context of
sequential optimization algorithms (e.g., Bayesian opti-
mization; see Section 4), a common way to navigate the
exploration—exploitation dilemma is to define an upper-
confidence bound (UCB) measure which is an additive com-
bination of the mean of the learner’s distributional prediction
at a given input and the standard deviation around that mean
(Schulz et al., 2018). A UCB measure can be interpreted as
an optimistic, or plausible upper bound on the, prediction at
a given point.

CLBEgTIG is computed similarly to a UCB measure, with
the critical difference that a multiplier of the standard de-
viation is subtracted from, rather than added to, the mean
prediction: unlike UCB, CLBgr1q is risk-averse in the
sense that an input that induces a high standard deviation in
TIG values is penalized rather than favored. In our frame-
work, the standard deviation in TIG values is interpreted as
the degree of risk of a non-transferable information gain (a
negative characteristic of an input) rather than of uncertainty
that can be reduced (a positive characteristic in an explo-
ration framework). While UCB measures can be interpreted
as optimistic estimates of a learner’s predictions, CLBgT1g
can instead be thought of as a pessimistic estimate of the
ETIG.

Interpretation as a robustness measure. Robust ex-
pected information gain (REIG) is the EIG of the worst-
case distribution inside an ambiguity set characterized by
a pre-specified radius around the prior distribution (Go &
Isaac, 2022). Under certain conditions, CLBgTiq can be
interpreted similarly to the REIG, where the user specifies
the parameter (3 rather than the radius of the ambiguity set;
see Appendix B for additional details. Intuition for this can
be established by realizing that a worst-case measure can be
thought of as a pessimistic estimate of the ETIG, and thus
as an exploration penalty.

3.3. Proposed algorithm

We here describe an application of CLBgT1¢ as a compo-
nent of an sOED algorithm to navigate the meta-learning
dilemma, i.e., balance the acquisition of transferable and
task-specific information. We refer to this approach as
SOED for meta-learning (sOED-ML). SOED-ML can be
summarized by a simple heuristic: seek task-specific infor-
mation when there is risk of non-transferable information
acquisition, and transferable information otherwise.

SOED-ML relies on the CLBgTI to detect the risk of non-

Algorithm 1 Sequential optimal experimental design for
meta-learning (SOED-ML)
Input: Candidate designs X, prior distribution
p(w,y | X), margin 8, number of Monte Carlo samples
N
Output: Optimal design z* € X

Sample {01, Y1,91) ... (On, YN, yN)} ~
p(0,%,y | X)
Compute TIG(6;,y;, X)V (6, ;)
ETIG(X) < By, , [TIG(6;,y:, X))
SDTIG(X) < +/Varg, ,, [T1G(0;,y:, X)]
CLBgric(X) + ETIG(X) — BSDTIG(X)
i* + argmax; ETIG(X)][¢]
¥« X[i*]
if CLBETIG (J)*) < 0 then
Compute TSIG (i, yi, X) V (i, yi)
ETSIG(X)  Ey, ,, [TSIG(;, yi, X)]
i* + argmax; ETSIG(X)[7]
¥« X|[i*]
end if
return z*

transferable information acquisition. More specifically, we
consider there to be a risk of non-transferable information
acquisition if CLBgr1q is negative at the ETIG maximizer
— in other words, if pursuing a standard version of SOED
would lead to a substantial risk of non-transferable informa-
tion acquisition. If this condition is met, SOED-ML selects
the input that maximizes the ETSIG. Otherwise, it selects
the input that maximizes the ETIG. The algorithm is given
in Algorithm 1.

The margin (3 is considered a hyperparameter of SOED-ML.
In Section 5, we empirically explore implementations in
which 3 decays as the experiment progresses. The implied
higher tolerance for the risk of non-transferable information
indicates both a lower risk of misspecification as additional
data is collected, and the reduced benefit of seeking task-
specific information as the data budget from a given task
becomes exhausted.

3.4. Estimating ETIG and ETSIG

Estimating the EIG is non-trivial, as it requires computing
either the posterior p(6, 9 | y, «) or the marginal distribution
p(y | x), neither of which are in general known in closed
form (Foster et al., 2019). Estimating the ETIG and ET-
SIG is even more complicated: as discussed in Section 2.1,
these require an additional approximation to the likelihood
p(y | z,0) itself (Foster et al., 2019).

While the TIG and task-specific information gain can be
computed as the log ratio of conditional and marginal likeli-
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hoods (log % and log %, respectively) rather

than as the log ratio of posterior and prior parameter likeli-
hoods, a representation of the posterior parameter distribu-
tion is nevertheless required in the context of SOED, where
the posterior from one experimental trial is used as the prior
on the following trial. Thus in our setting, the prior distribu-
tion across which the conditional and marginal likelihoods,
and the expectations of the TIG and task-specific informa-
tion gain themselves, is computed is not usually known in
closed form.

One way to circumvent the intractability of the parameter
distribution is to approximate it with the best-fitting member
of a family of variational distributions (Foster et al., 2019).
A common choice of variational distribution is a multivariate
normal, which is theoretically justified as the asymptotic
parameter distribution in the limit of infinite data (Paninski,
2005).

To estimate the ETIG and ETSIG in the context of the simu-
lation experiments reported in Section 5, we approximate
the prior distribution as a multivariate normal and then ap-
ply importance weights to correct for biases induced by the
approximation®. Using a multivariate normal allows us to
leverage analytical formulations for conditional parameter
distributions when estimating the likelihood. We will use
P to refer to probability density functions induced by the
multivariate approximation to the prior.

Of course, the quality of the ETIG and ETSIG estimates
depends on the quality of the variational approximation. If
the approximation is biased (in our case, if the true distri-
bution is not a multivariate normal), this will lead to biased
estimates of the ETIG and ETSIG. We follow previous work
and sample from the variational prior, but correct for bias in
this approximation using importance weights (Ryan et al.,
2015; Foster et al., 2019; Senarathne et al., 2020).

Approximating the prior with a multivariate normal, as op-
posed to another variational family, offers two practical
advantages:

1. Bias in the variational approximation can lead to un-
derrepresentation of parameter values that fall in the
tails of the true prior. The multivariate normal includes
the variance of the distribution as an explicit parameter,
and so can be straightforwardly rescaled to accom-
modate better coverage of the tails of the posterior.
Following Ryan et al. (2015), to construct our varia-
tional approximation we inflate the covariance of the

3Previous work has used the Laplace method (e.g., Ryan et al.
(2015); Senarathne et al. (2020)) or stochastic gradient descent
(Foster et al., 2019) to construct this approximation. Here, we use
a moment-matching approximation in favor of the Laplace method
since we observed that in our setting it leads to higher effective
sample sizes.

best-fitting distribution, and then correct for bias using
importance weighting.

2. The conditional variational prior is known in closed
form, which allows fast sampling from variational ap-
proximations to p(¢) | 6) and p(6 | ¥).

Using this method, the estimates of the ETIG and ETSIG
corresponding to a given input x are computed as follows:

ETIG(x) =
ETSIG(x) =

Samples subscripted by ¢ are drawn from the variational
prior p(y | ,6,v) p(6,)*. Samples subscripted by [ are
drawn from the variational prior p(6,+). Samples sub-
scripted by 7 are drawn from the conditional variational
prior p(¢ | 6;) (in Equation (8)) or p(6 | ¢;) (in Equa-
tion (9)), which can be found in analytical form by con-
ditioning the multivariate normal on 6; (Equation (8)) or v;
(Equation (9)).

w indicates the relevant importance weighting function. For
example, w(6;, ;) is computed as:
p(0i, ¥i)/D(6:, i)

where ZV is a normalizing constant that ensures the N
importance weights sum to 1.

4. Related literature

Our work is closely related to work on the effect of misspeci-
fied priors on the performance of Bayesian decision-making
algorithms (Simchowitz et al., 2021). Our setting differs
in that we consider the meta-learning problem as an exper-
imental design problem in which the relevant trade-off is
between actively seeking information about the value of
transferable or task-specific parameters. Although related,
this is somewhat different from the exploration—exploitation
dilemma considered by Simchowitz et al. (2021), where
the learner trades off seeking information about the value

4Although not shown explicitly in Equation (8) and Equa-
tion (9), each set of M inner samples is constrained to include
the corresponding sample (6;,1);) to avoid pathological behavior
when a value y; has low prior probability (Foster et al., 2020).
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of parameters with reward maximization (see discussion in
Section 3.2). Future work should better understand the con-
nections between these two works and how the theoretical
results of Simchowitz et al. (2021) can be leveraged in, e.g.,
hyperparameter selection for SOED-ML.

In the context of active learning, some work has provided
theoretical results on the effect of (Cuong et al., 2016) and
approaches to addressing (Go & Isaac, 2022) prior mis-
specification. Unlike this work, our focus here is on the
application to the meta-learning context, i.e., to estimation
of a subset of the parameters or of an embedded model (see
discussion in Section 3.1). This connects our work to other
problem formulations which constitute estimation of an em-
bedded model. The remainder of this section discusses these
connections.

Model selection. Applications of SOED to model selec-
tion, i.e., to identification of one of a set of models each
characterized by a corresponding parameter distribution,
is an example of an embedded model problem where the
learner’s goal is to identify the model indicator without par-
ticular regard for the corresponding parameter value (Foster,
2021). Sloman et al. (2023) showed that a phenomenon
analogous to non-transferable information acquisition can
occur in this context — misspecified parameter distributions
can lead inference to favor the wrong model in early trials —
and discussed the resulting model selection/parameter esti-
mation dilemma, which can be seen as a special case of the
meta-learning dilemma®. Past work has navigated the model
selection/parameter estimation dilemma in the context of
SOED by exclusive reliance on the EIG measure (i.e., com-
puting the information gain measure with respect to both
model and parameter values) (Borth, 1975) and alternating
between maximizing information gain about the parameter
values and model indicator (Cavagnaro et al., 2016).

Optimization with Bayesian priors. Bayesian optimiza-
tion (BO) is an active learning method for maximizing black-
box functions. BO can be seen as a case of sequential
Bayesian active learning on an embedded model where the
parameter of interest is the location of the function maxi-
mum (Hernandez-Lobato et al., 2014; Foster, 2021). Prior
work has shown that the choice of prior affects the perfor-
mance of BO (Schulz et al., 2016). Solutions to this problem
include online hyperparameter optimization (Berkenkamp
et al., 2019), using prior data from experts to form a better
prior (Wang et al., 2023), and constructing robust acquisi-
tion functions that explicitly account for the possibility of
prior misspecification (Bogunovic et al., 2018; Kirschner
et al., 2020).

3This connects closely with a body of work on the sensitivity of
model selection indices to the choice of prior parameter distribution
(Vanpaemel, 2010).

Multi-armed bandit problems are a related setting, which are
instead characterized by a discrete action space. Theoretical
results and bounds on the regret the learner should antic-
ipate under prior misspecification have been established
here (Kannan et al., 2018; Kveton et al., 2021; Bogunovic
& Krause, 2021; Simchowitz et al., 2021). As mentioned
above, many algorithmic solutions to prior misspecifica-
tion in this setting promote “exploration” by incentivizing
the learner to sample where they have high prior uncer-
tainty (Kveton et al., 2021; Bogunovic & Krause, 2021;
Simchowitz et al., 2021).

5. Experiments

To explore the behavior of SOED-ML, we ran a set of simula-
tion experiments in an adapted version of the the preference
modeling paradigm from Foster et al. (2019). Details of the
paradigm can be found in Appendix D of their paper. In-
puts were selected from among 20 scalar values of = evenly
spaced between —80 and 80. These inputs are mapped to
outputs y such that the mean of y |  depends on z and 6
(which is unknown to the learner), and the variance of y | =
depends on |z| and o (which is known to the learner).

In the parameterization given in Foster et al. (2019), @ is
the only parameter whose value is unknown to the learner.
We consider this the transferable parameter, and include an
additional, task-specific parameter ¢ that transformed inputs
x — z. In other words, tasks characterized by high values
of 1) produced outputs with more extreme means and larger
variances. Following Foster et al. (2019), we set the prior
distribution of 6 to N(—20,20) and the prior distribution
of ¢ to N(0,1). In all experiments, §* = —12 and ¢*
was drawn from a true distribution g(¢). This distribution
was N(0,1) in the well-specified case (i.e., matched the
prior) and N(2,1) in the misspecified case. We ran both
experiments where 0 = 1 and where o = 5.

Figure 3 shows the values of the acquisition functions dis-
cussed in Section 2 and Section 3 under the misspecified
prior and 0 = 1. In this example, choosing the value of
z that maximizes ETIG would results in non-transferable
information acquisition, as indicated by the negative value
of ATIG at the corresponding value of x.

When computing the values of our acquisition functions, we
multiplied the covariance matrix of the best-fitting multi-
variate normal approximation to the posterior by a factor of
2. We set N (the number of outer samples) to 10,000, and
M (the number of inner samples) to 100 (reflecting results
from Rainforth et al. (2018) that M is optimally o< v/N).

Figure 4 shows how the value of CLBgrig, computed
according to different margins g at the ETIG-maximizer,
changes over the course of the experiments. When the
margins are fixed (purple lines), the value of 3 was set at
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Figure 3. Values of the acquisition functions discussed in Section 2
and Section 3 in the context of the modeling paradigm used for
our simulation experiments. Here, selecting the value of x that
maximizes ETIG would result in non-transferable information
acquisition.

0.4 N 0.4

0.2 A 0.2

-0.2/ £ -0.2

Beric

-0.4 -0.4

cr
CLBgy

-0.6. -0.6,
-0.8 -0.8

-1 -1
0 1 2 3 4 5 0 1 2 3 4 5
Trial Trial

(a) Well-specified; o = 5. (b) Misspecified; o = 5.
Figure 4. Value of CLBgTi¢ at the ETIG-maximizer on each trial
of a sequential experiment, as computed according to the margins
indicated in the legend. Lines indicate means and shaded regions
indicated the corresponding standard errors across 100 simulated
experiments.

the beginning of the experiment and remained unchanged.
When the margins decay, the value of 3 was set to the indi-
cated value at the beginning of the experiment and decayed
exponentially:

208

B 11
19 + 1008, (i

ﬂtJrl =

Figure 4 shows that the fixed margins result in values of
CLBETI¢ that are relatively insensitive to where one is in
the experiment: they remain persistently negative, indicating
that they are dominated by inherent variance in the outputs
and do not reflect the information the learner has gained
about the value of . The result is that SOED-ML never ac-
tively seeks transferable information. On the other hand, the
decaying margins are negative at the beginning of the exper-
iment, i.e., indicate the risk of non-transferable information
acquisition that is reflected in Figure 3, but then increase and
stabilize above 0, resulting in the acquisition of transferable
information once the learner has gained information about
the value of .

Figure 5 shows how sOED-ML compares to sequential max-
imization of ETIG and EIG in terms of the learner’s ability
to recover 6* (measured as log (p(6*)); because of the pat-

0 1 2 3 4 5 0 1 2 3 4 5
Trial Trial

(a) Well-specified; o = 1. (b) Well-specified; o = 5.

2 3 4 5 0 1 2 3 4 5
Trial Trial

(c) Misspecified; o = 1. (d) Misspecified; o = 5.

Figure 5. Degree to which each sOED method is able to recover
0*; SOED-ML is indicated by the corresponding decaying margin
[. Lines indicate means and shaded regions indicate the corre-
sponding standard errors across 100 simulated experiments.

terns described above, we show only results for sSOED-ML
using decaying margins). As expected, when the prior is
well-specified (Figure 5a and Figure 5b), ETIG (orange
line) outperforms all the other methods. However, this is
not the case when the prior is misspecified (Figure 5c¢ and
Figure 5d): here, as anticipated, ETIG on average leads to
non-transferable information gain (lower log (p(6*))) after
the first trial, which is protected against by some versions
of SOED-ML.

6. Conclusion

In this paper, we leverage a Bayesian experimental design
framework to analyze the setting of Bayesian meta-learning
under prior misspecification. We expand upon existing mea-
sures of EIG and construct a distribution of information gain
values, and then use this distribution to diagnose the risk
of non-transferable information acquisition. As we demon-
strated with our proposed algorithm sOED-ML, our work
facilitates the development of active yet aware algorithms
that perform well in varied task environments (such as when
eliciting feedback from multiple experts). Future work can
leverage the distribution of information gain values implicit
in EIG measures in other ways, such as by developing acqui-
sition functions for robust or “risk-seeking” experimental
design.
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A. Derivation of Equation (5)

p(ylﬂmw)H
AIG(z) = Eg g |Eyn rw) |log ————=
() q()[yq(y’)[gp(y|:c)

=Eunq) H(q(y | z,0) [ ply | ) —H(q(y | z,w) || p(y | z,w))]
= Eung(w) [H(q(y | 7,w)) + Dk (q(y | z,w) || p(y | ¥)) — H(q(y | 7,w)) — Dk (¢(y | z,w) || p(y | 2,w))]
= Eung(w) Pxr (q(y | z,w) [ p(y | 2)) — Dk (q(y | z,w) || p(y | 7,w))] (12)

B. Connections between CLBgri¢ and Robust EIG

Go & Isaac (2022) developed a measure of robust expected information gain (REIG), which can be interpreted as the lowest
expected information gain from the set of distributions in an ambiguity set of radius € around the learner’s prior, i.e.,

REIG(x,¢) = igf {EIG(z,Q) | 2(Q, P) < €}. (13)

Notice that the EIG is written as a function of both the input = and the prior distribution () over which the infimum is taken;
to compute the EIG as a function of a given (), one replaces the probability measures indicated by p in Equation (1) with
those induced by (). P indicates some fixed reference prior, and Z is a suitable divergence measure.

Notice that computing the REIG requires specifying the radius of the ambiguity set e. CLBgT1 admits a similar robustness
interpretation as REIG, with the researcher degree of freedom being the choice of margin 3 as opposed to the radius of
the ambiguity set e. While Go & Isaac (2022) focus on a robust measure of the EIG, rather than the ETIG, they discuss
extensions to their method for the case of a misspecified likelihood. Our discussion of the connection between REIG and
CLBgT1¢ assumes this extended version of REIG as an information gain measure on the transferable parameter 6.

Estimation of both REIG and CLBgT; requires multiple samples of TIG from the learner’s prior p(6, 1, y). In the context
of REIG, changing the value of € can be thought of as shifting the REIG between an average of these samples (¢ = 0; i.e.,
the ETIG) to the worst-case TIG from the sample (¢ — o0) (Go & Isaac, 2022). Similarly, in the context of CLBgT1G,
changing the value of 3 can be thought of as moving the CLBgT1c from the sample average (8 = 0; i.e., the ETIG) to a
value of TIG /3 standard deviations below this mean. In other words, higher 8 moves the CLBg1¢ further into the lefthand
tail of an approximate distribution of TIG values. In the case where the true distribution of TIG values is continuous and the
learner has access to an infinite number of samples from their prior, they can expect to recover values of CLBg;¢ that are
closer and closer to the worst-case TIG as 3 — oo. Thus, like increasing e in the context of REIG, increasing [ shifts the
CLBgT1¢ from the ETIG to the worst-case TIG value.



