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Abstract
A common and efficient way to elicit human feed-
back is to present users with a set of options,
and record their relative preferences on the pre-
sented options. The contextual combinatorial ban-
dits problem captures this setting algorithmically;
however, it implicitly assumes an underlying con-
sistent reward model for the options. The setting
of human feedback (which e.g. may use different
reviewers for different samples) means that there
may not be any such model – it is misspecified.

We first derive a lower-bound for our setting,
and then show that model misspecification can
lead to catastrophic failure of the C2UCB al-
gorithm (which is otherwise near-optimal when
there is no misspecification). We then propose
two algorithms: the first algorithm (MC2UCB) re-
quires knowledge of the level of misspecification
ϵ (i.e., the absolute deviation from the closest well-
specified model). The second algorithm is a gen-
eral framework that extends to unknown ϵ. Our
theoretical analysis shows that both algorithms
achieve near-optimal regret. Further empirical
evaluations, conducted both in a synthetic envi-
ronment and a real-world application of movie
recommendations, demonstrate the adaptability
of our algorithm to various degrees of misspecifi-
cation. This highlights the algorithm’s ability to
effectively learn from human feedback, even with
model misspecification.

1. Introduction
In many practical applications, the objective is to learn the
optimal set selection under a certain context. Take, for in-
stance, the field of advertising, where multiple slots on a
webpage are available for displaying ads. Here, the business
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owner aims to select the most effective set of ads, i.e., the
ones that most engage the customer and potentially generate
the most profit. Yet, in real-world datasets, realizability –
the assumption of an exact functional relationship between
human feedback and the features related to the context – is
rarely satisfied. Misspecification happens in several ways:
for example in personalized recommendation systems, mul-
tiple users might share an account occasionally. There can
also be less benign causes such as non-genuine click traffic
or reviews injected into the feedback by adversarial third-
party agents. In this paper, we delve into the challenge of
learning optimal set selection from online human feedback,
even when faced with model misspecification.

The stochastic contextual bandit is a general framework for
online learning problems, where at each round the learner
observes a context c ∈ C, then chooses one out of m arms
and observes a reward for only the arm chosen. The prob-
lem has been widely studied for the last two decades and
has found uses ranging from online advertising, recommen-
dations (Yue and Guestrin, 2011; Li et al., 2016) to drug
testing and medical trials (Durand et al., 2018; Villar et al.,
2015). The task is to minimize regret commonly defined as
the difference in collected reward from an optimal policy.
For instance in online advertising, the context can be the
browser history and search query from a user, the arm can be
a specific advertisement out of many possible choices and
the reward can be a click or a purchase. The corresponding
task is then to maximize the expected click or purchase rate.
The main challenge is to achieve a delicate balance between
exploitation i.e., choosing the best arm based on the current
belief and exploration i.e., choosing a rarely chosen arm to
gather more information about the environment.

Further, many real-world problems have many slots instead
of one (e.g., choosing multiple ads to show). It is commonly
referred to as the contextual combinatorial bandit problem,
where at each time-slot the learner is allowed to select a
set of k < m arms. The problem has mostly been stud-
ied under the semi-bandit feedback where the learner can
see the rewards from the individual arms in the chosen set.
Prior works (Qin et al., 2014; Yue and Guestrin, 2011) have
commonly made some reasonable assumptions on the value
of a set of arms like sub-modularity or other smoothness
assumptions. Both these works study the problem under a
linear function class, i.e., the mean reward of an arm is an
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unknown linear function of the arm’s feature.

Model misspecification, as previously exemplified, is over-
whelming in real-world problems with human feedback.
This is especially true when the chosen function class is
linear, which is a common choice for theoretically analyzed
algorithms in contextual combinatorial bandits (Qin et al.,
2014; Yue and Guestrin, 2011). Therefore, it is important
to develop and analyze algorithms that can provably work
under model misspecification without complete knowledge
about the level of misspecification.

In this work we highlight the need for such robust algo-
rithms in two ways, (i) theoretically, we show that a popular
algorithm for contextual combinatorial bandit (Qin et al.,
2014) can have a catastrophic failure in the presence of mis-
specification, while our algorithm can avoid it without the
knowledge of the exact level of misspecification and (ii) in
a practical movie recommendation task we demonstrate that
our algorithms well adapt to the misspecification that nat-
urally arises in the real-world dataset, and can outperform
the commonly adopted algorithm.

The main contributions of this paper are as follows,

• (Hardness) We first characterize the hardness of
model misspecification in linear contextual combi-
natorial bandits by providing a regret lower bound
of Ω

(
kϵ
√
(d− 1)/(8 log(m))T

)
as Proposition 4.1,

where m is the number of arms, ϵ the level of mis-
specification, d the dimension of the arms’ features
and T the time-horizon. We also show that a popular
algorithm for this setting C2UCB (Qin et al., 2014) can
have a catastrophic failure in the presence of model
misspecification, leading to arbitrarily large regret on
some problem instances. In particular, the C2UCB
has regret kT/2, which is significantly worse than the
lower bound O(kϵT ) when ϵ is small.

• (Algorithms) We first propose Algorithm 1 for the mis-
specified setting where the misspecification level ϵ is
known to the learner. In Theorem 5.1, we show that the
algorithm has a regret of Õ

(
d
√
kT + kϵ

√
dT
)

, thus
essentially matching our lower bound. Next we pro-
pose Algorithm 2 that works even when ϵ is unknown
to the learner. Algorithm 2 corrals multiple instances
of Algorithm 1 with different values of hypothetical
ϵ’s, and is shown to have near-optimal regret.

• (Empirical Validation) Through simulated experi-
ments, we show that our algorithms can significantly
outperform the C2UCB (i.e., ours achieve sublinear
regret while C2UCB yields linear regret). We then val-
idate our algorithm on the Movielens dataset (Harper
and Konstan, 2015) in a setting similar to (Qin et al.,

2014). We show that our algorithm has slightly bet-
ter performance than C2UCB in the original setting
while outperforming C2UCB by a large extent in the
presence of small model misspecification. Thus our
algorithm can lead to robustness by preventing catas-
trophic failure, with little/no performance cost.

2. Related Work
The combinatorial multi-armed bandit problem has been
studied extensively in the last decade. There are several
works in the semi-bandit feedback setting (Chen et al., 2013;
Combes et al., 2015; Kveton et al., 2015; Merlis and Mannor,
2019; Yang et al., 2021), where the learner observes the
individual rewards of the arms in the set of arms chosen at
each round, along with the total reward for the composite
action. This is also the feedback model in our paper. The
problem has also been studied under full-bandit feedback
where only the composite reward of the whole set of arms
chosen can be observed (Cesa-Bianchi and Lugosi, 2012;
Lin et al., 2014; Agarwal and Aggarwal, 2018; Rejwan and
Mansour, 2020).

The contextual version of the problem has been studied
in (Yue and Guestrin, 2011) under the linear function class,
where the value utility from choosing a set of arms is sub-
modular in terms of the individual rewards. Qin et al. (2014)
also study the problem under linear rewards, where the re-
ward derived from a set of arms is a function of the individ-
ual rewards that satisfies some monotonicity and Lipschitz
properties. We closely follow the model in (Qin et al., 2014),
however as we will show both theoretically and empirically,
their algorithm is not robust to misspecification and can
undergo catastrophic failure. Our algorithm, on the other
hand, can adapt to unknown model misspecifications. Note
that the contextual combinatorial bandit problem has been
studied under general function classes recently in (Sen et al.,
2021), however, they can only adapt to known misspecifi-
cation and their algorithm only provably works for the case
when the set function is just the sum of individual rewards.
In fact, we show that as a corollary of our results, we can
extend their algorithm to the unknown misspecification case.

The linear bandits problem was first studied in the misspec-
ified setting in (Ghosh et al., 2017), where they propose
a robust algorithm that switches between OFUL (Abbasi-
Yadkori et al., 2011) and UCB (Auer, 2002) based on a
hypothesis test. It was shown in (Lattimore et al., 2020)
that the OFUL algorithm itself can be easily made robust
to known model misspecification. In fact our algorithm
for the known misspecification case can be seen as an ex-
tension of the algorithm in (Lattimore et al., 2020) to the
combinatorial setting. Takemura et al. (2021) have recently
come up with a robust version of LinUCB (Chu et al., 2011)
that works without knowledge of the misspecification level,
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however their algorithm is not easily implementable. Foster
et al. (2020) have recently shown how to adapt to model
misspecification for contextual bandits under general func-
tion classes, however it is unclear how their algorithms can
be adapted to the combinatorial setting. There is also a
growing body of literature on adversarial corruption. Most
works in this area like (Seldin and Slivkins, 2014; Lykouris
et al., 2018; Gupta et al., 2019) study the non-contextual
K-armed setting. A recent work (Bogunovic et al., 2021)
has examined the problem in the context of Gaussian pro-
cess bandit optimization. None of the prior works consider
the combinatorial contextual bandits setting. The contextual
bandit work in (Bogunovic et al., 2021) can tolerate epsilon
up to O(1/

√
T ). Our regret bounds degrade gracefully with

any ϵ, and we can achieve the same regret scaling with T .
However, it is important to note that we can only handle an
oblivious adversary which we believe is good enough for
many real-world applications.

Note that all the above works in misspecified bandits try to
achieve a regret scaling of O(ϵT ), which is also the natural
lower bound for most of the problem settings. The desidera-
tum is for this linear (in T ) term to degrade gracefully with
the level of misspecification. Indeed algorithms that are
not robust to misspecification can have regret O(cT ) under
ϵ-misspecification where c is a constant with c ≫ ϵ (Latti-
more et al., 2020). This is in particular concerning when
ϵ is small (e.g., ϵ = T−1/3, as the algorithms have regret
linear in T while it is possible to achieve O(T 2/3) regret).

Closely related is a growing body of literature on model-
selection via corralling different bandit algorithms both in
the adversarial setting (Agarwal et al., 2017) and in the
stochastic setting (Cutkosky et al., 2020; Arora et al., 2021).
Our algorithm that can adapt to unknown misspecification is
based on the stochastic corralling idea but explicitly adapted
to model misspecification, which can lead to sharper guar-
antees and much simpler algorithms.

3. Problem Setting
We consider the following contextual combinatorial bandits
problem: At every time step t, the online learner observes
a context ct generated by the environment according to a
fixed context distribution DC . For the context ct, the arms
in set A = [m] are featurized as {xt(1), · · · ,xt(m)} ⊂ Rd.
Based on {xt(i)}i∈[m], the online learner selects k distinct
arms, which we denote as St.

After the set St is played, the online learner observes a
score r̃t(i) for each arm i in set St, and a reward R̃t for
the set St, both generated by the stochastic environment.
Given the context ct, the reward expectation of St is denoted
by Rt := E

[
R̃t|ct, St

]
. Correspondingly, the regret at

time step t is defined as Regt = R∗
t − Rt, where R∗

t :=

maxSt
E[Rt|ct, St], i.e., the expected reward of the optimal

set given context ct. The goal is to minimize the cumulative
regret R(T ) =

∑T
t=1 Regt.

In this paper, we focus on a setting where an arm’s expected
score rt(i) := E [r̃t(i)|ct, St] comes from a linear model
with some misspecification (Section 3.1) and the expected
reward of a set St is determined by a function of {ri}i∈St

,
with some general properties (Section 3.2).

3.1. Misspecified Linear Model

The linear contextual combinatorial bandits problem has
been widely studied under the well-specified linear model:
rt(i) = θ⊤∗ xt(i) (Qin et al., 2014). Since practical datasets
are unlikely to be well-specified w.r.t the linear function
class, recent work has begun to study the misspecified linear
model for contextual bandits (Lattimore et al., 2020).

Here we extend the line of recent work on the misspecified
model to contextual combinatorial bandits. Specifically, we
consider the case where the expected score rt(i) follows a
misspecified linear model:

rt(i) = θ⊤∗ xt(i) + ∆
(i)
t ,

where ∆(i)
t captures the misspecification, which can depend

on the arm i, the played set St, and can potentially be dif-
ferent in different time step t. In this paper, we consider
bounded misspecification, which can be formalized as the
following assumption. Note that when it is clear from the
context we will drop the superscript in ∆

(i)
t and just use the

notation ∆t.

Assumption 3.1 (Bounded Misspecification). For any time
step t ∈ [T ], arm i ∈ [m], and set S, we assume the mis-
specification to be uniformly bounded as

∣∣∣∆(i)
t

∣∣∣ ≤ ϵ.

The online learner might not know the misspecification level
ϵ. In subsequent sections, we first present a near-optimal
algorithm for the known ϵ scenario. Then we propose an
algorithm that can adapt to an unknown misspecification
level. We show that our algorithms enjoy near-optimal regret
guarantees.

3.2. Set Reward Function

The expected reward Rt of set St is a general function
of the expected scores rt(i) for the arms i ∈ St and the
arms’ embedding x therein. We denote the set reward
function to be fx(rt, St), where x is the embedding of
the arms, rt is the vector of all m arms’ expected scores:
rt := [rt(1), · · · , rt(m)]. For brevity, we use f(rt, St) in
the rest of our paper.

In order to develop efficient algorithms, we need to impose
the following regularity assumptions (Qin et al., 2014):
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Assumption 3.2 (Monotonicity of f ). For any S, if r(i) ≤
r′(i),∀i ∈ S, we have f (r, S) ≤ f (r′, S).

Assumption 3.3 (Lipschitz continuity of f ). There ex-
ists a universal constant C > 0 such that for any two
scores r, r′ and any S, we have |f (r, S)− f (r′, S)| ≤
C
√∑

i∈S [r(i)− r′(i)]
2.

Here we present two commonly seen examples that satisfy
the assumptions above.

Example 1 (Summation). f(r, S) =
∑

i∈S r(i) clearly
satisfies the assumptions.

Example 2 (Probabilistic Coverage). Consider the observed
score r̃t(i) being a Bernoulli random variable with ex-
pectation rt(i) and set reward function being f(r, S) =
1−Πi∈S(1− r(i)). This f(r, S) measures the probability
that the set S has at least 1 positive scored arm. It is easy to
verify that f(r, S) is monotone and 1-Lipschitz continuous
w.r.t r.

The online learner may not have direct knowledge of the set
reward function f(·, ·). Instead, we assume that the online
learner has access to an oracle O, which takes an estimate of
the arm scores r̂t = [r̂t(1), · · · , r̂t(m)] as input and returns
the corresponding optimal set: O(r̂t) = argmaxS f(r̂t, S).

Notice that there is no necessity for estimating the set re-
ward function f(·, ·), as the online learner has the oracle O.
The main challenge in achieving optimal regret is to esti-
mate the unknown parameter θ∗ in the presence of model
misspecification ∆t.

4. The Hardness of Model Misspecification
Here we show the hardness of the linear contextual com-
binatorial bandits problem with model misspecification.
We focus on the simple setting with set reward func-
tion f(r, S) =

∑
i∈S r(i). The hardness is two-folds:

Information-theoretically, we show a regret lower bound
in the presence of model misspecification (Proposition 4.1).
This lower bound holds for all possible algorithms and rep-
resents the hardness of model misspecification. Algorithmi-
cally, we show that a previously established near-optimal
algorithm for contextual combinatorial bandits (i.e., not
adapted to misspecification) can be arbitrarily far from the
information-theoretic lower bound (Proposition 4.3). This
corresponds to the hardness and challenge in designing ef-
fective algorithms.

4.1. Regret Lower Bound

The lower bound here is a natural extension of the lower
bound for misspecified linear bandits (Lattimore et al.,
2020). Recall that m is the number of arms, d is the dimen-
sion of arm’s feature xt(i). We have the following lower

bound which holds both when the online learner knows or
does not know the misspecification level ϵ.

Proposition 4.1 (Lower Bound for Misspecified Contextual
Combinatorial Bandits). There exists a set of arms’ features
{xt(1), · · · ,xt(m)} , t ∈ [T ], such that for any algorithm,
there is a θ∗ for which

R(T ) ≥ kϵ

√
d− 1

8 log(m)
min

(
T,

m

2k

)
.

Remark 4.2. The interesting regime is when m ≫ kT ,
i.e., there is a large number of arms and the online learner
cannot play them all. The lower bound then becomes
R(T ) ≥ kϵ

√
d−1

8 log(m)T . The linear in T term is unfor-
tunately unavoidable.

Proof Sketch: The proof follows by constructing a set
of m arms, with features almost orthogonal to each other.
The misspecification is set such that all but the optimal arm
has reward 0. Therefore any algorithm learns nothing until
it includes the optimal arm into the played set, which in
expectation takes min(T, m

2k ) steps. The environment can
be constructed such that playing each sub-optimal set in-
duces kϵ

√
d−1

8 log(m) regret (details deferred to Appendix A).
Combining the two parts completes the proof.

4.2. Catastrophic Failure from Not Adapting to
Misspecification

Algorithms not adapting to misspecification can have an
arbitrarily large gap to the lower bound in Proposition 4.1.
Here we focus on contextual combinatorial bandits algo-
rithm C2UCB (Qin et al., 2014, Algorithm 1), which is
near-optimal for linear models but does not adapt to misspec-
ification. Specifically, C2UCB estimates θ∗ by an online
ridge regression based on the arms’ scores.

θ̂t =

(
λI+

t−1∑
τ=1

∑
i∈Sτ

xτ (i)xτ (i)
⊤

)−1(t−1∑
τ=1

∑
i∈Sτ

r̃τ (i)xτ (i)

)
.

where λ > k is the ridge regression regularization. The
UCB for each arm i is calculated as

r̂t(i) = θ̂⊤
t xt(i) + βt

√
xt(i)V

−1
t−1xt(i), (1)

where Vt−1 = λI +
∑t−1

τ=1

∑
i∈Sτ

xτ (i)xτ (i)
⊤ and βt

scales the uncertainty (variance) to give the right confidence
interval. The set St is constructed by taking the arms with
top-k r̂(i). The next result states that C2UCB can be arbi-
trarily far from the regret lower bound in Proposition 4.1.

Proposition 4.3 (Failure of Ignoring Misspecification). For
any ϵ > 0, there exists a problem instance with horizon T ,
dimension d = 2 and misspecification level ϵ, such that the
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regret of C2UCB is R(T ) = kT/2, which does not become
smaller when ϵ is small.
Remark 4.4. Comparing the regret in Proposition 4.3 with
the corresponding regret lower bound of Ω̃(kϵT ). We see
that the regret of C2UCB is worse by a factor of 1/ϵ. This
is clearly sub-optimal when ϵ is small.

Proof Intuition. By carefully setting the misspecification
∆t, a very small ϵ can lead to subtle differences between the
estimate θ̂t and the true parameter θ∗, which in turn leads
to the selection of a set St having constant regret (i.e., not
depending on ϵ). The ratio of the actual regret R(T ) and the
lower bound kϵT can therefore be larger than any constant
ξ, by setting ϵ ≈ 1

ξ .
Remark 4.5. As a comparison, we will present an algorithm
in the next section (Algorithm 1) adapted to model misspec-
ification. The algorithm is nearly optimal, in the sense that
there exists a problem independent constant ξ0 ∈ R+, such
that R(T )

kϵT
√
log T

≤ ξ0 for all k, ϵ and T .

One particular regime of interest is when ϵ = Θ( 1√
T
).

While the lower bound Proposition 4.1 suggests that it is
possible to achieve O(k

√
T ) regret, our lower bound prob-

lem instance shows that the C2UCB can only achieve a
linear Θ(kT ) regret. As we will see in the next section,
our proposed algorithm (Algorithms 1 and 2) can achieve
O(k

√
T ) regret, which matches the lower bound and avoids

the linear regret.

5. Known Misspecification Level ϵ
In this section, we present the algorithm when the misspec-
ification level ϵ is known. The algorithm incorporates the
misspecification into the optimistic arm estimate, which
gives a valid UCB for each arm in the presence of model
misspecification. Further, we prove that the proposed al-
gorithm is nearly optimal for all general (monotone and
Lipschitz continuous) set reward functions f(r, S).

Algorithm. The algorithm is inspired by the recent work
on misspecified contextual bandits (Lattimore et al., 2020).
At time t, the algorithm constructs optimistic estimates r̂t(i)
for all arms:

r̂t(i) =θ̂⊤
t xt(i) + βt

√
xt(i)V

−1
t−1xt(i)

+ ϵ

t−1∑
s=1

∑
j∈Ss

∣∣xt(i)V
−1
t−1xs(j)

∣∣+ ϵ,
(2)

with θ̂t = V−1
t−1bt−1, bt−1 =

∑t−1
τ=1

∑
i∈Sτ

r̃τ (i)xτ (i),
Vt−1 = λI+

∑t−1
τ=1

∑
i∈Sτ

xτ (i)xτ (i)
⊤. Recall that r̃τ (i)

is the observed stochastic score for arm i at time step τ . The
online learner then queries the oracle O with the optimistic
estimate r̂ to obtain the set St. See Algorithm 1.

Algorithm 1 MISSPECIFIED CONTEXTUAL COMBINATORIAL
(MC2) UCB FOR KNOWN ϵ

1: Input: Misspecification level ϵ, online ridge regression coef-
ficient λ

2: Initialize: V0 ← λI,b0 ← 0
3: for t = 1, · · · , T do
4: θ̂t ← V−1

t−1bt−1

5: Calculate r̂t(i) according to Equation (2)
6: Invoke oracle O with r̂t(i), i ∈ [m] to calculate set St and

play set St

7: Observe the stochastic arms score {r̃t(i)}i∈St
and reward

R̃t

8: Update Vt ← Vt−1 +
∑

i∈St
xt(i)xt(i)

⊤ and bt ←
bt−1 +

∑
i∈St

r̃t(i)xt(i)
9: end for

Regret Analysis. We now state our main result for the
known ϵ case. Without loss of generality, assuming bounded
parameters ∥θ∗∥2 ≤ 1, ∥xt(i)∥2 ≤ 1 and bounded feedback
r̃t(i) ∈ [0, 1] for all t ≥ 0 and i ∈ [m], for any 0 <
δ < 1, as one can rescale r̃t(i) and xt(i) to satisfy such

assumptions. Setting βt =
√
d log( 1+kt/λ

δ ) + λ1/2 and
λ > k, we have the following regret bound.

Theorem 5.1 (Regret Upper Bound for Algorithm 1). With
probability at least 1 − δ, the regret of Algorithm 1 is
R(T ) ≤ Õ

(
(
√
d+

√
λ)
√
kTd+ kϵ

√
dT
)
, where d is the

dimension of features xt(i), k is the size of St.

The Õ notation ignores the logarithmic terms. See Ap-
pendix B for the complete analysis. The regret bound has
two parts: well-specified bound Õ

(
(
√
d+

√
λ)
√
kTd

)
,

which matches the established regret bound for well-
specified models (Qin et al., 2014); and misspecified bound
Õ
(
kϵ
√
dT
)

, which nearly matches the Ω(kϵ
√
dT ) lower

bound in Proposition 4.1.

Theorem 5.1 Proof Intuition: The proof relies on show-
ing that r̂t(i) is always an optimistic estimate of rt(i) de-
spite the ϵ misspecification (Lemma B.2). Conceptually,
this avoids under-estimating the arms belonging to the op-
timal set and converging to a sub-optimal set. Further, the
regret of Algorithm 1 is closely related to the “tightness” of
estimate r̂t(i), measured by

∑
t∈[T ]

∑
t∈St

(r̂t(i)− r∗t (i)).
The summation of the first two terms in Equation (2) minus
r∗t (i) can be bounded exactly as the C2UCB analysis, and
the summation of the last two terms in Equation (2) gives
the Õ(kϵ

√
dT ) term.

6. Unknown Misspecification Level ϵ
In this section, we present an algorithm and the correspond-
ing regret bound that works without knowledge of the mis-
specification level ϵ. Our proposed algorithm can be viewed
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as a meta algorithm built upon base algorithms designed for
the known ϵ case. Our theoretical analysis shows that an
algorithm designed for known ϵ case can be coupled with
the proposed meta algorithm to work in the unknown ϵ case,
at the cost of a log2 T multiplicative factor in the regret
bound. We further instantiate the result with two different
base-algorithm implementations to show the generality and
the nearly optimal regret bound.

6.1. Algorithm

The algorithm for unknown misspecification level ϵ employs
multiple base algorithms designed for the known ϵ case,
with each of the base algorithms Al having hypothetical
misspecification level ϵl = 2l√

T
. The putative or promised

regret bound of base algorithm Al is typically in the form
of:

RegAl
(T ) ≤ Reg0(T )︸ ︷︷ ︸

Well-specified regret

+ κϵlT︸︷︷︸
Misspecified regret

, (3)

where the “Well-specified regret” Reg0(T ) corresponds
to the regret when there is no misspecification (e.g.,
Reg0(T ) = Õ

(
(
√
d+

√
λ)
√
kTd

)
for Algorithm 1); and

the “Misspecified regret” κϵlT is induced by model mis-
specification (e.g., κ = Õ(k

√
d) for Algorithm 1).

On top of the base algorithms, there is a meta algorithm that
chooses one of the base algorithm Al to construct and play
set St at each time step t. The meta algorithm conceptually
treats each of the base algorithms Al as an “arm”, and
adopts a UCB-like algorithm to choose Al. Though we are
not the first to combine base bandits algorithms (see recent
progress in (Pacchiano et al., 2020; Cutkosky et al., 2020;
Arora et al., 2021)), our algorithm is specially designed for
the misspecification problem and is therefore much simpler.
Specifically, the optimistic estimate for base algorithm Al

is:

U(l, t) := µ̂l
T (l,t−1)︸ ︷︷ ︸

Reward Avg.

− κϵl︸︷︷︸
UCB shift

+min

(
1,

√
32 log(T 3L/δ)

T (l, t− 1)

)
︸ ︷︷ ︸

Uncertainty of base algorithm Al

.
(4)

The “Reward Avg.” term is the empirical reward av-
erage of base algorithm Al, defined as µ̂l

T (l,t−1)
:=

1
T (l,t−1)

∑t−1
τ=1 R̃τ · I(lτ = l), where T (l, t − 1) :=∑t−1

τ=1 I(lτ = l) is the number of times that Al is invoked
up to time step t− 1. The “Uncertainty of base algorithm
Al” corresponds to the uncertainty of the empirical reward
average, where L is the total number of base algorithms Al

and δ is some hyper-parameter corresponding to the failure

probability. The “UCB shift” term is inspired by (Cutkosky
et al., 2020) and has two-fold implications: intuitively, the
shift makes the base algorithm selection biased towards Al

with smaller hypothetical misspecification level ϵl; techni-
cally, the shift makes the final regret bound depends only on
ϵl∗ := minl ϵl ≥ ϵ, instead of depending on all ϵl. Note that
ϵ is the true misspecification level unknown to the online
learner.

Besides the typical UCB-like base algorithm selection, the
meta algorithm is also equipped with base algorithm elimi-
nation - to eliminate the base algorithms with hypothetical
misspecification level smaller than ϵ. Any base algorithm
Al satisfying the following inequality will be eliminated:

T (l,t)∑
τ=1

(
µ̂l
τ−1 − R̃l

τ

)
≥RegAl

(T (l, t))

+ 3
√
log(T 3L/δ)T (l, t).

(5)

Recall that µ̂l
τ−1 is the empirical reward average of base

algorithm Al when it is invoked for τ − 1 times. R̃l
τ is

the observed set reward when Al is invoked for the τ -th
time. RegAl

(T (l, t)) corresponds to Equation (3), which is
the promised regret of base algorithm Al played for T (l, t)
steps, if Al has the correct misspecification level ϵl (i.e.,
ϵl ≥ ϵ).

Intuitively, µ̂l
τ−1 serves as an approximate proxy of

Rl,∗
τ (i.e., the optimal expected reward for the time

step when Al is invoked for its τ -th time). The
elimination criterion is then approximately comparing∑T (l,t)

τ=1

(
Rl,∗

τ − R̃l
τ

)
with the promised regret bound

RegAl
(T (l, t)). If

∑T (l,t)
τ=1

(
µ̂l
τ−1 − R̃l

τ

)
is significantly

larger than RegAl
(T (l, t)), it implies that the base algo-

rithm Al has wrong hypothetical misspecification level ϵl
and should be eliminated. See Algorithm 2 for the pseu-
docode.

6.2. Regret Analysis

We now present our main result for the unknown ϵ case. We
again assume bounded parameters ∥θ∗∥2 ≤ 1, ∥xt(i)∥2 ≤ 1
and bounded feedback r̃t(i) ∈ [0, 1] for all t ≥ 0 and
i ∈ [m].

Theorem 6.1 (Regret Upper Bound for Algorithm 2).
With probability at least 1 − 4δ, the regret of Algo-
rithm 2 is R(T ) ≤

(
1 + log T

2 + log2 T
)
RegAl∗ (T ) +

(1 + 4 log T )
√
8T log(T 3L/δ), where RegAl∗ (T ) is the

regret bound for base algorithm Al∗ , with l∗ =
argminl ϵl ≥ ϵ.

Corollary 6.2. If the base algorithms {Al}l implement
Algorithm 1, the regret of Algorithm 2 for the un-

6
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Algorithm 2 MISSPECIFIED CONTEXTUAL COMBINATORIAL
(MC2) UCB FOR UNKNOWN ϵ

1: Input: Time horizon T , online ridge regression coefficient λ
2: Base Algorithms Initialization: Base algorithms
A1, · · · ,A⌈ log T

2 ⌉, where Al implements Algorithm 1 with

hypothetical misspecification level ϵl = 2l√
T

3: Initialize: Set step counter T (l, 0) = 0 and empirical reward
average µ̂l

0 = 0 for all base algorithms Al. Initialize active
base algorithms set L1 =

{
1, · · · ,

⌈
log T

2

⌉}
.

4: for t = 1 to T do
5: Calculate optimistic estimate U(l, t) for all base algorithms

Al according to Equation (4)
6: Choose base algorithm Alt with lt = argmaxl∈Lt

U(l, t)
7: Let base algorithm Alt choose and play a set St

8: Observe the stochastic arms score {r̃t(i, St)}i∈St
and re-

ward R̃t.
9: Send {r̃t(i, St)}i∈St

to Alt for its updates
10: Update T (lt, t) = T (lt, t−1)+1 and T (l, t) = T (l, t−1)

for l ̸= lt
11: Update µ̂lt

T (lt,t)
= 1

T (lt,t)

∑t
τ=1 R̃τ · I(lτ = lt) and

µ̂l
T (l,t) = µ̂l

T (l,t−1) for l ̸= lt
12: if elimination criterion Equation (5) is satisfied for lt then
13: Lt+1 = Lt − {lt}
14: else
15: Lt+1 = Lt

16: end if
17: end for

known misspecification ϵ can be bounded as: R(T ) ≤
Õ
(
(
√
d+

√
λ)
√
kTd+ kϵ

√
dT
)

.

Compared to the lower bound in Proposition 4.1, the regret
bound in Corollary 6.2 is nearly optimal. Algorithm 2 is a
general-purpose algorithm for leveraging multiple instances
of a known misspecification base algorithm to obtain an
algorithm for the unknown ϵ setting. In this context, we
can extend our results to a setting where rt(i) is a general
function of the context and the arm features (not just a linear
function θ⊤

∗ xt(i)). The base algorithm can be Algorithm 1
in (Sen et al., 2021).

Corollary 6.3. Consider the setting where f(r, S) =∑
i∈S ri and rt(i) = g∗(ct,xt(i), i) + ∆

(i)
t s.t.

∣∣∣∆(i)
t

∣∣∣ < ϵ

(unknown to the learner). Suppose g∗ lies in a known finite
function class G. Then Algorithm 2 applied with Algorithm
1 in (Sen et al., 2021) as a base algorithm has a regret
guarantee of, R(T ) ≤ Õ

(
k
√
mT log(|G|) + kϵ

√
mT

)
,

where Õ(·) hides some polylog factors.

The above corollary generalizes the result in (Sen et al.,
2021) to unknown misspecification level ϵ. We provide a
more detailed result as Corollary C.1 in the appendix. Note
that as noted in (Sen et al., 2021), the above result can be
generalized to efficiently learnable infinite function classes.

Theorem 6.1 Proof Intuition: The interesting part is to
prove the overall regret only depends on ϵl∗ , where l∗ :=
argminl ϵl ≥ ϵ. Consider step t and let Alt be the invoked
base algorithm. The single step regret can be rewritten as:

R∗
t −Rlt

T (lt,t)
=R∗

t − U(l∗, t)︸ ︷︷ ︸
(a)

+U(l∗, t)− U(lt, t)︸ ︷︷ ︸
(b)

+ U(lt, t)− µ̂lt
T (lt,t−1)︸ ︷︷ ︸

(c)

+ µ̂lt
T (lt,t−1)

−Rlt
T (lt,t)︸ ︷︷ ︸

(d)

Intuitively, (a) only depends on l∗. As lt is selected at time
t, (b) is smaller than 0 and therefore is ignored in the upper
bound. (c) has a −κϵl term, which originates from the UCB
shift term in the U(l, t) definition (Equation (4)). Finally,
(d) has a κϵlt term, since Alt has a κϵltT misspecified regret.
Note that the κϵlt in (c) and (d) cancels. The regret R(T )
therefore only depends on ϵl∗ .

7. Experiments
In this section, we evaluate the proposed algorithms on a
synthetic environment and an environment derived from a
real-world dataset. The results show that our proposed algo-
rithm (MC2UCB) is significantly better than C2UCB (Qin
et al., 2014) (which is near-optimal for the well-specified
contextual combinatorial bandits) when the underlying envi-
ronment is misspecified. Further, MC2UCB closely matches
the performance of C2UCB when the underlying environ-
ment is nearly well-specified.

Synthetic Experiments. The synthetic environment is con-
structed in the following way: We first generate 100 arms
with features x(i) and the vector θ∗ from a 10-dimensional
spherical Gaussian distribution N (0, 1√

10
I10). For the well-

specified linear model, the score for the arm i at time step t
is generated as r(i) = x(i)⊤θ∗ + ηt, where ηt ∼ N (0, 0.1)
is noise. The goal of the online learner is to find the optimal
set of 3 arms, which maximizes the sum of expected scores.

To create misspecification, we first rank the arms accord-
ing to the inner product x(i)⊤θ∗ in descending order and
let B denote the set of arms with indices in {30, · · · , 39}.
Intuitively, B is a set of bad arms in the well-specified envi-
ronment. We change their scores to be r(i) = x(i)⊤θ∗+ϵ+
ηt,∀i ∈ B, where ϵ controls the level of misspecification.
Specifically, we set ϵ = 2, which completely changes the
the optimal set when comparing to the one under a well-
specified linear model θ∗.

We evaluate three algorithms: “MC2UCB with ϵ = 2” cor-
respond to Algorithm 1 with ϵ = 2. “MC2UCB with un-
known ϵ” corresponds to Algorithm 2, which adopts 3 base

7
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Figure 1: Performance of different learning algorithms in
a misspecified environment. MC2UCB with known ϵ (Al-
gorithm 1) and unknown ϵ (Algorithm 2) significantly out-
performs the C2UCB. More importantly, C2UCB converges
to the wrong set and has a linear regret. This shows that the
MC2UCB algorithms can well adapt to misspecification and
avoid catastrophic failure.

algorithms with hypothetical ϵ in {0, 0.5, 2}. “C2UCB” im-
plements the Contextual Combinatorial UCB (Qin et al.,
2014), which is designed for the well-specified contextual
bandits. The average regret (and standard deviation) of 5
runs are reported in Figure 1.

Application to Online Movie Recommendation. We also
evaluate the performance of our proposed algorithms on
a real-world problem. The environment is derived from
a popular recommendation dataset: Movielens-1M, which
contains over 1 million ratings of 3952 movies by 6040
users.

We construct the environment similar to (Qin et al., 2014).
Specifically, we split the users into a training set (containing
5740 users) and a test set (containing 300 users with more
than 100 ratings). We then use a rank-16 matrix factorization
on the ratings from the training set to create movies’ features.
Those movie features are used as arms’ features (xt(i)) in
the online learning environment.

For each of the users in the testing set, the online learning
algorithm recommends 30 movies to the user in every time
step t. A movie with a rating of 4 or 5 will have a score of 1,
and other movies have a score of 0. The algorithm interacts
with the user for 150 times (i.e., T = 150). The performance
is measured by recommendation accuracy: |P∩St|

|St| , where
P is the set of movies that the user gives rating 4 or 5.

For the misspecified environments, we consider the case
where the first 25 feedback come a different model: The
environment draws a θ′ from spherical Gaussian, and the
movies whose embedding has top-20 inner product with θ′

have score 1 and all others have score 0. θ′ is fixed for the
first 25 steps. The rewards of the entire time horizon thus
do not follow a single linear model.

We test C2UCB and MC2UCB on both environments (i.e.,

0 50 100 150 200 250 300
Steps

0.6

0.7

Ac
cu

ra
cy C2UCB

MC2UCB with = 0.5
MC2UCB with = 2.0
MC2UCB with unknown 

(a) No artificial misspecification

0 50 100 150 200 250 300
Steps

0.2

0.4

0.6
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cy C2UCB

MC2UCB with = 0.5
MC2UCB with = 2.0
MC2UCB with unknown 

(b) First 25 steps misspecified

Figure 2: In the “No artificial misspecification” environment
(Fig. (a)), the MC2UCB with known ϵ = 0.5 and MC2UCB
with unknown misspecification yield slightly better perfor-
mances, which shows that the MC2UCB algorithms can
well adapt to the misspecification that naturally arises in a
real-world dataset. Further, in the misspecified environment
(Fig. (b)), MC2UCB algorithms offer significantly higher
accuracy.

with/without artificial misspecification). We set ϵ = 0.5
or 2 for MC2UCB with known misspecification, and set
MC2UCB with unknown to adopt 3 base algorithms with
hypothetical ϵ in {0, 0.5, 2}. The results in Figure 2 are the
average and standard deivation of 300 testing users. The
result shows the superior performance of MC2UCB, as it
significantly outperforms the C2UCB when the model is
misspecified and loses nothing in the nearly well-specified
environment.
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A. Proof of Section 4
A.1. Proof of Proposition 4.1

Proof. We begin by construct m unit l2 norm points in Rd, denote the stacking of those points as X0 ∈ Rm×d. We construct
X0 such that

a⊤a = 1, ∀a ∈ rows(X0) and a⊤b ≤
√

8 log(m)

d− 1
, ∀a,b ∈ rows(X0).

The existence of such construction follows from Lemma 3.1 of (Lattimore et al., 2020). Replicate X0 for k times, denote the
resulting matrix to be X ∈ Rkm×d. We next prove the lower bound with the bandits problem instance with arms’ features
being X.

Choose a∗ ∈ rows(X) and let

θ∗ = ϵ

√
d− 1

8 log(m)
a∗.

Further, let the expected score of arms be

rt(a
∗) = θ⊤

∗ a
∗ = ϵ and rt(b) = θ⊤

∗ b+∆t(b) = 0 ∀b ̸= a∗.

It is easy to verify that |∆t(a)| ≤ ϵ,∀a ∈ rows(X), t ∈ [T ]. Let τ = min {t ≤ T : a∗ ∈ St}, i.e., the first time St contains

a∗. Notice that the optimal set S∗, composed by k copies of a∗, has reward kϵ
√

d−1
8 log(m) . Also notice that all arms other

than a∗ gives 0 reward. We have that

R(T ) = kϵ

√
d− 1

8 log(m)
E [τ ] .

Notice that any there are m different features in X, and the algorithm sees the reward for at most k arms in each time
step. Since the arm a∗ is randomly chosen from X and the feedback of all other arms are 0 (which therefore provides no
information about a∗), we have that E[τ ] ≥ min(T, m

2k ). Therefore the regret lower bound is

R(T ) = kϵ

√
d− 1

8 log(m)
min

(
T,

m

2k

)
.

This completes the proof. ■

A.2. Proof of Proposition 4.3

The following proof is inspired by “Failure of unmodified algorithm” in Appendix E of (Lattimore et al., 2020).

Proof. Consider the simple case with feature dimension d = 2. Let the arms’ features {xt(1), · · · ,xt(m)} be that

• For t ≤ T/2 and t is odd, xt(i) = [ϵ, 0],∀i ∈ [m].

• For t ≤ T/2 and t is even, xt(i) = [0, ϵ],∀i ∈ [m].

• For t > T/2, xt(i) = [1, 0],∀i ≤ m/2 and xt(i) = [ϵ, ϵ]∀i > m/2.

Further, we assume m > 2k and no noise. Let θ∗ = [ 12 ,−
1
2 ]. For the misspecification, let

∆t([ϵ, 0]) = −ϵ, ∆t([0, ϵ]) = ϵ, ∆t([1, 0]) = 0, ∆t([ϵ, ϵ]) = 0.

Notice that for t = T/2, the algorithm has 0 regret and

VT/2 =

[
λ+ kTϵ2

4 0

0 λ+ kTϵ2

4

]
, bT/2 =

[
−kTϵ2

4
kTϵ2

4

]

11
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therefore θ̂T/2 =
[
− kTϵ2

4λ+kTϵ2 ,
kTϵ2

4λ+kTϵ2

]
. For t = T/2 + 1, we have

θ̂⊤
t [1, 0] + βt∥[1, 0]∥V−1

t
= − kTϵ2

4λ+ kTϵ2
+O

(√
d log T

kTϵ2

)
and

θ̂⊤
t [ϵ, ϵ] + βt∥[ϵ, ϵ]∥V−1

t
= 0 +O

(√
d log T

kT

)
Therefore for kTϵ2 large enough (i.e., larger than some problem independent constant C0), the algorithm will choose k
arms with feature [ϵ, ϵ] to construct the set.

We next show that the algorithm will play the set composed by k arms with feature [ϵ, ϵ] until T . Suppose the algorithm has
played such set up to time t0 > T/2, then

Vt0 =

[
λ+ kTϵ2

4 + k(t0 − T/2)ϵ2 k(t0 − T/2)ϵ2

k(t0 − T/2)ϵ2 λ+ kTϵ2

4 + k(t0 − T/2)ϵ2

]
, bt0 =

[
−kTϵ2

4
kTϵ2

4

]

and again we have θ̂t0 =
[
− kTϵ2

4λ+kTϵ2 ,
kTϵ2

4λ+kTϵ2

]
and for t = t0 + 1

θ̂⊤
t [1, 0] + βt∥[1, 0]∥V−1

t
= − kTϵ2

4λ+ kTϵ2
+O

(√
d log T

4kt0ϵ2 − kTϵ2

)
and

θ̂⊤
t [ϵ, ϵ] + βt∥[ϵ, ϵ]∥V−1

t
> 0

Therefore the algorithm will continue play the set composed by k copies of [ϵ, ϵ].

Notice that given the problem instance construction, we have xt(i) = [1, 0] has 1/2 reward and xt(i) = [ϵ, ϵ] has 0 reward.
Therefore for t > T/2, the algorithm induces kT/2 regret. This compeltes the proof.

■

B. Proof of Section 5
We first present the complete version of Theorem B.1 which provides an explicit regret bound.
Theorem B.1 (Regret upper bound of Algorithm 2). Assume that ∥θ∗∥2 ≤ 1, ∥xt(i)∥2 ≤ 1 and rt(i) ∈ [0, 1] for all t ≥ 0

and i ∈ [m]. Given 0 < δ < 1, set βt =
√
d log( 1+kt/λ

δ ) + λ1/2 with λ ≥ k. Then, with probability at least 1− δ, the total
regret can be bounded as

R(T ) ≤2C

(√
d log

(
1 + kt/λ

δ

)
+ λ1/2

)√
kTd log

(
1 +

Tk

λd

)

+ 2ϵkCT

√
d log

(
1 +

Tk

λd

)
+ 2ϵkCT.

Ignoring the constants and logarithm terms, the regret bound can be simplified as

R(T ) = Õ
(
(
√
d+

√
λ)
√
kTd+ kϵ

√
dT
)
.

Lemma B.2. If we set βt =

√
d log

(
1+kt/λ

δ

)
+ λ1/2, with probability at least 1− δ, for all S and i ∈ S, we have

0 ≤ r̂t(i)− r∗t (i, S) ≤ 2βt∥xt(i)∥V−1
t−1

+ 2ϵ

t−1∑
s=1

∑
j∈Ss

∣∣xt(i)V
−1
t−1xs(j)

∣∣+ 2ϵ.
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Proof. Notice that

θ̂t =V−1
t−1

(
t−1∑
s=1

∑
i∈Ss

xs(i) · r̃s(i, Ss)

)

=V−1
t−1

(
t−1∑
s=1

∑
i∈Ss

xs(i) ·
(
θ⊤
∗ xs(i) + ηs(i) + ∆s(i, Ss)

))

=θ̂+
t +V−1

t−1

t−1∑
s=1

∑
i∈Ss

xs(i) ·∆s(i, Ss),

where we define θ̂+
t := V−1

t−1

(∑t−1
s=1

∑
i∈Ss

xs(i) ·
(
θ⊤
∗ xs(i) + ηs(i)

))
. Therefore, we have

r̂t(i)− r∗t (i, S) =
(
θ̂+
t − θ∗

)⊤
xt(i) + βt

√
xt(i)V

−1
t−1xt(i)︸ ︷︷ ︸

term (a)

+ xt(i)
⊤V−1

t−1

t−1∑
s=1

∑
j∈Ss

xs(j) ·∆s(j, Ss) + ϵ

t−1∑
s=1

∑
j∈Ss

∣∣xt(i)V
−1
t−1xs(j)

∣∣
︸ ︷︷ ︸

term (b)

+ ϵ−∆t(i, S)︸ ︷︷ ︸
term (c)

.

To see the range of term (a), applying Theorem 2 of (Abbasi-Yadkori et al., 2011) (we provided it in Lemma B.3) and we
have (

θ̂+
t − θ∗

)⊤
xt(i) + βt

√
xt(i)V

−1
t−1xt(i) ≤

(
∥θ̂+

t − θ∗∥Vt−1 + βt

)
∥xt(i)∥V−1

t−1

≤2βt∥xt(i)∥V−1
t−1

.

Similarly we can show the term (a) is bounded below by 0.

For term (b), notice that∣∣∣∣∣∣xt(i)
⊤V−1

t−1

t−1∑
s=1

∑
j∈Ss

xs(j) ·∆s(j, Ss)

∣∣∣∣∣∣ ≤ ϵ

t−1∑
s=1

∑
j∈Ss

∣∣xt(i)V
−1
t−1xs(j)

∣∣ ,
where the inequality follows as all ∆s(j, Ss)s are bounded by ϵ. Therefore the second term is bounded below by 0 and
upper bounded by 2ϵ

∑t−1
s=1

∑
j∈Ss

∣∣xt(i)V
−1
t−1xs(j)

∣∣.
Lastly, one can easily verify that the last term ranges from 0 to 2ϵ. ■

Lemma B.3. For ∥θ∗∥2 ≤ 1 and ∥xt(i)∥2 ≤ 1,∀t ∈ [T ] and i ∈ [m], define Vt = λI+
∑t

s=1

∑
i∈Ss

xt(i)xt(i)
⊤. Define

θ̂+
t := V−1

t−1

(∑t−1
s=1

∑
i∈Ss

xs(i) ·
(
θ⊤
∗ xs(i) + ηs(i)

))
, we have

∥θ̂+
t − θ∗∥Vt−1

≤

√
d log

(
1 + kt/λ

δ

)
+ λ1/2.

Proof. This follows directly from Theorem 2 of (Abbasi-Yadkori et al., 2011). ■

Lemma B.4 (Lemma 4.2 of (Qin et al., 2014)). Let Vt = λI +
∑t

s=1

∑
i∈Ss

xs(i)xs(i)
⊤. For λ ≥ k, we have

t∑
s=1

∑
i∈Ss

∥xs(i)∥2V−1
t−1

≤ 2d log

(
1 +

tk

λd

)
.

13
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Now we present the proof of Theorem B.1.

Proof. We first bound the regret at round t as follows,

Regt = f(r∗t , S
∗)− f(r∗t , St) ≤ f(r̂t, St)− f(r∗t , St) ≤ C

√∑
i∈St

(r̂t(i)− r∗t (i))
2

≤ C
∑
i∈St

(r̂t(i)− r∗t (i)) .

Therefore with probability at least 1− δ,

R(T ) ≤C

T∑
t=1

∑
i∈St

(r̂t(i)− r∗t (i))

≤C

T∑
t=1

∑
i∈St

2βt∥xt(i)∥V−1
t−1

+ 2ϵC

T∑
t=1

∑
i∈St

t−1∑
s=1

∑
j∈Ss

∣∣xt(i)V
−1
t−1xs(j)

∣∣+ 2ϵkCT

≤C

√√√√kT

T∑
t=1

∑
i∈St

4β2
t ∥xt(i)∥2V−1

t−1

+ 2ϵkCT

√√√√ T∑
t=1

∑
i∈St

t−1∑
s=1

∑
j∈Ss

(
xt(i)V

−1
t−1xs(j)

)2
+ 2ϵkCT

≤2CβT

√√√√kT

T∑
t=1

∑
i∈St

∥xt(i)∥2V−1
t−1

+ 2ϵkCT

√√√√ T∑
t=1

∑
i∈St

∥xt(i)∥2V−1
t−1

+ 2ϵkCT.

With βT =

√
d log

(
1+kT/λ

δ

)
+ λ1/2 and Lemma B.4, we have

R(T ) ≤2C

(√
d log

(
1 + kT/λ

δ

)
+ λ1/2

)√
kTd log

(
1 +

Tk

λd

)

+ 2ϵkCT

√
d log

(
1 +

Tk

λd

)
+ 2ϵkCT.

Ignoring the log terms, we have R(T ) = Õ
(
C(

√
d+

√
λ)
√
kTd+ kϵ

√
dT
)

■

C. Deferred Results of Section 6
C.1. Formal Version of Corollary 6.3

Corollary C.1. Consider the setting where f(r, S) =
∑

i∈S ri and rt(i) = g∗(ct,xt(i), i)+∆
(i)
t s.t.

∣∣∣∆(i)
t

∣∣∣ < ϵ (unknown
to the learner). Suppose g∗ lies in a known finite function class G. Then Algorithm 2 applied with Algorithm 1 in (Sen et al.,
2021) as a base algorithm has a regret guarantee of,

R(T ) ≤ C

(
1 +

log T

2
+ log2 T

)(
k

√
(m− k + 1)T log

(
|G|T
δ

)
+ ϵkT

√
m− k + 1

)
+ (1 + 4 log T )

√
8T log(T 3L/δ).

C.2. Proof of Theorem 6.1

We first present the complete version of Theorem 6.1 which proivdes an explicit regret bound.

14
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Theorem C.2 (Regret upper bound of Algorithm 2). Assume that ∥θ∗∥ ≤ B, ∥xt(i)∥2 ≤ 1 and rt(i) ∈ [0, 1] for all t ≥ 0
and i ∈ [m]. Then with probability at least 1− 4δ, the regret can be bounded as

R(T ) ≤
(
1 +

log T

2
+ log2 T

)
RegAl∗ (T ) + (1 + 5 log T )

√
8T log(T 3L/δ),

where RegAl∗ (T ) is the regret bound from Algorithm 1 for base algorithm Al∗ , with l∗ = argminl ϵl ≥ ϵ. Ignoring the
constants and log terms, we have

R(T ) = Õ
(
(
√
d+

√
λ)
√
kTd+ kϵ

√
dT
)
.

Notation in the proof. We denote R̃l
τ as the observed stochastic reward when the meta algorithm chooses base algorithm

Al for the τ -th time, and denote its expectation to be Rl
τ . For that time step, we denote Rl,∗

τ to be the expectation of the
optimal reward. Further, we denote T (l, t) to be the number of times we pick base algorithm Al up to time step t.

Let ϵ be the true misspecification bound, and define l∗ = argminl ϵl ≥ ϵ. Before proving Theorem 6.1, we first present a
few lemmas.

Lemma C.3 (Adapted from Lemma 8 of (Cutkosky et al., 2020)). With probability at least 1− δ, for all l and t, we have

T (l,t)∑
τ=1

∣∣∣Rl
τ − R̃l

τ

∣∣∣ ≤√8T (l, t) log (T 3L/δ).

Proof. Notice that Rl
τ is the expectation of R̃l

τ . This follows directly from a martingale-type concentration. ■

Lemma C.4 (Adapted from Lemma 9 of (Cutkosky et al., 2020)). With probability at least 1− δ, for all l, for all t, we have

T (l,t)∑
τ=1

µ̂l
τ −Rl,∗

τ ≤ 3
√

8T (l, t) log(T 3L/δ).

Proof. By a martingale-type concentration, for all l and t, we have

T (l,t)∑
τ=1

(
R̃l

τ − Ecτ

[
Rl

τ

])
≤
√
8T (l, t) log(T 3L/δ).

Define R∗ = Ect [R
∗
t ], where the expectation is taken over the context ct ∼ DC . For any context ct, we have Rl

t ≤ R∗
t . Thus

we have Ect [R
l
t] ≤ Ect [R

∗
t ], and

T (l,t)∑
τ=1

(
R̃l

τ −R∗

)
≤
√
8T (l, t) log(T 3L/δ).

Therefore for any l and t, we have

µ̂l
t −R∗ ≤

√
8 log(T 3L/δ)

T (l, t)
=⇒

T (l,t)∑
τ=1

µ̂l
τ −R∗ ≤ 2

√
8T (l, t) log(T 3L/δ). (6)

Further notice that Rl,∗
τ is a random variable in [0, 1], with expectation being R∗ and randomness induced by the context ct,

we have that

T (l,t)∑
τ=1

R∗ −Rl,∗
τ ≤

√
log( 1δ )T (l, t)

2
≤
√
8 log(T 3L/δ)T (l, t). (7)

The first inequality follows from Hoeffding’s inequality. Combining Equations (6) and (7) completes the proof. ■
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Recall that R∗ = Ect [R
∗
t ], i.e., taking expectation over the context ct ∼ DC . We have the following lemma.

Lemma C.5 (Simplified Lemma 10 of (Cutkosky et al., 2020)). With probability at least 1− 4δ, for l∗ = argminl ϵl ≥ ϵ
and for all t, we have the following hold simultaneously

T (l∗,t)∑
τ=1

Rl∗,∗
τ −Rl∗

τ ≤ RegAl∗ (T (l
∗, t)),

R∗ − µ̂l∗

T (l∗,t−1) ≤ min

(
1,

RegAl∗ (T (l
∗, t− 1))

T (l∗, t− 1)
+ 2

√
8 log(T 3L/δ)

T (l∗, t− 1)

)
,

T (l∗,t−1)∑
τ=1

µ̂l∗

τ−1 − R̃l∗

τ ≤ RegA∗
l
(T (l∗, t− 1)) + 4

√
8T (l∗, t− 1) log (T 3L/δ).

Proof. With Theorem B.1, with probability 1− δ, we have that for all t, we have

T (l∗,t)∑
t=1

Rl∗,∗
τ −Rl∗

τ ≤ RegAl∗ (T (l
∗, t)).

With Lemma C.3, with probability 1− δ, for all t, we have

T (l∗,t)∑
τ=1

Rl∗

τ − R̃l∗

τ ≤
√

8T (l∗, t) log(T 3L/δ).

With Lemma C.4, with probability 1− δ, for all t, we have

T (l∗,t)∑
τ=1

µ̂l∗

τ −Rl∗,∗
τ ≤ 3

√
8T (l∗, t) log(T 3L/δ).

With Hoeffding’s inequality, for all l ∈ [L] and all t, with probability at least 1− δ, we have

T (l,t−1)∑
τ=1

R∗ −Rl,∗
τ ≤

√
8T (l, t) log(T 3L/δ)

The rest of proof conditions on the above 4 equations to hold, which has probability at least 1− 4δ. Note that the first claim
in the lemma immediately follows from the first equation above.

For the second equation, the 1 of the minimum holds by assumption that R∗ ≤ 1. For T (l∗, t− 1) ̸= 0, we have

R∗ − µ̂l∗

T (l∗,t−1) =R∗ −
1

T (l∗, t− 1)

T (l∗,t−1)∑
τ=1

Rl∗,∗
τ +

1

T (l∗, t− 1)

T (l∗,t−1)∑
τ=1

(
Rl∗,∗

τ − R̃l∗

τ

)
≤RegAl∗ (T (l

∗, t− 1))

T (l∗, t− 1)
+ 2

√
8 log(T 3L/δ)

T (l∗, t− 1)
.

For the third equation, we have

T (l∗,t−1)∑
τ=1

µ̂l∗

τ−1 − R̃l∗

τ =

T (l∗,t−1)∑
τ=1

µ̂l∗

τ−1 −Rl∗,∗
τ +Rl∗,∗

τ −Rl∗

τ +Rl∗

τ − R̃l∗

τ

≤RegAl∗ (T (l
∗, t− 1)) + 4

√
8T (l∗, t− 1) log(T 3L/δ).

■
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Lemma C.6 (Adapted from Lemma 11 of (Cutkosky et al., 2020)). With probability at least 1− δ, all base algorithms Al

satisfy:

T (l,T )∑
τ=1

µ̂l
τ−1 −Rl

τ ≤ RegAl
(T (l, T )) + 5

√
8T (l, T ) log(T 3L/δ) + 1.

Proof. Let t be the smallest time such that T (l, t) = T (l, T ). Then we have lt = l, which implies that lt ∈ Lt. Therefore

T (l,t−1)∑
τ=1

µ̂l
τ−1 − R̃l

τ ≤ RegAl
(T (l, t− 1)) + 4

√
8T (l, t− 1) log(T 3L/δ).

Further, by Lemma C.3, we have that

T (l,t−1)∑
τ=1

R̃l
τ −Rl

τ ≤
√

8T (l, t− 1) log(T 3L/δ).

Combining with the fact that µ̂l
T (l,T )−1 −Rl

T (l,t) ≤ 1, we have

T (l,T )∑
τ=1

µ̂l
τ−1 −Rl

τ ≤ RegAl
(T (l, T )) + 5

√
8T (l, T ) log(T 3L/δ) + 1.

This completes the proof. ■

Now we are ready to prove Theorem 6.1.

Proof. The proof again condition on the 4 events listed at the beginning of the proof for Lemma C.5, which happens with at
least 1− 4δ probability. We first decompose the regret as

T∑
t=1

R∗
t −Rt =

T∑
lt ̸=l∗

(R∗
t −R∗) +

∑
lt=l∗

(Rl∗,∗
T (l∗,t) −Rl∗

T (l∗,t)) +
∑
lt ̸=l∗

(R∗ −Rlt
T (lt,t)

).

For the first term, we have
T∑

lt ̸=l∗

(R∗
t −R∗) ≤

√
8T log(T 3L).

For the summation for lt = l∗, with Lemma C.5, we have

T (l∗,T )∑
τ=1

Rl∗,∗
τ −Rl∗

τ ≤ RegAl∗ (T (l
∗, T )).

For lt ̸= l∗, we must have U(lt, t) ≥ U(l∗, t) since l∗ ∈ Lt for all t. Then we have

R∗ =R∗ − U(l∗, t) + U(l∗, t)− U(lt, t) + U(lt, t)

≤min

(
1,

RegAl∗ (T (l
∗, t− 1))

T (l∗, t− 1)

)
+ κϵl∗ + U(lt, t).

This follows from the second equation in Lemma C.5 and the construction of U(l∗, t). Thus, we have∑
lt ̸=l∗

R∗ −Rlt
T (lt,t)

≤
∑
lt ̸=l∗

min

(
1,

RegAl∗ (T (l
∗, t− 1))

T (l∗, t− 1)

)
+ κϵl∗

∑
l ̸=l∗

T (l, T )

+
∑
lt ̸=l∗

(
U(lt, t)−Rlt

T (lt,t)

)
≤RegAl∗ (T ) log

2 T + κϵl∗T +
∑
lt ̸=l∗

(
U(lt, t)−Rlt

T (lt,t)

)
.
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For the term
∑

lt ̸=l∗ U(lt, t)−Rlt
T (lt,t)

, first notice that

∑
t|lt=l

U(l, t)− µ̂l
T (l,t−1) =

T (l,T )∑
τ=1

min

(
1, 2

√
8 log(T 3L/δ)

τ − 1

)
− κϵl

≤4
√
8T (l, T ) log(T 3L/δ)− κϵlT (l, T ).

Therefore, we have∑
lt ̸=l∗

U(lt, t)−Rlt
T (lt,t)

=
∑
lt ̸=l∗

U(lt, t)− µ̂lt
T (lt,t−1) + µ̂lt

T (lt,t−1)
−Rlt

T (lt,t)

=
∑
l ̸=l∗

∑
t|lt=l

U(l, t)− µ̂l
T (l,t−1) + µ̂l

T (l,t−1) −Rit
T (it,t)


≤
∑
l ̸=l∗

4√8T (l, T ) log(T 3L/δ)− κϵlT (l, T ) +

T (l,T )∑
τ=1

µ̂l
τ−1 −Rl

τ


≤
∑
l ̸=l∗

[
9
√
8T (l, T ) log(T 3L/δ) +RegAl

(T (l, T ))− κϵlT (l, T ) + 1
]
.

The last step uses Lemma C.6. Notice that

RegAl
(T (l, T ))− κϵlT (l, T ) = Reg0(T (l, T )), ∀l ∈ [L].

Notice that l ∈ [ log T
2 ]. Putting everything together, we have

R(T ) ≤
√
8T log(T 3L/δ) +RegAl∗ (T (l

∗, T )) +RegAl∗ (T ) log
2 T + κϵl∗T

+
log T

2
Reg0(T ) + 5 log(T )

√
8T log(T 3L/δ) +

log T

2

≤
(
1 +

log T

2
+ log2 T

)
RegAl∗ (T ) + (1 + 5 log T )

√
8T log(T 3L/δ).

This completes the proof. ■
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