
Building Community Driven Libraries
of Natural Programs

Leonardo Hernandez Cano * 1 Yewen Pu * 2 Robert Hawkins 3 Josh Tenenbaum 4 Armando Solar-Lezama 1

Abstract

A typical way in which a machine acquires knowl-
edge from humans is through programs – se-
quences of executable commands that can be com-
posed hierarchically. By building a library of
programs, a machine can quickly learn how to
perform complex tasks. However, as programs
are typically created for specific situations, they
become brittle when the contexts change, making
it difficult compound knowledge learned from dif-
ferent teachers and contexts. We present natural
programming, a library building procedure where
each program is represented as a search prob-
lem containing both a goal and linguistic hints
on how to decompose it into sub-goals. A natu-
ral program is executed via search in a manner
of hierarchical planning and guided by a large
language model, effectively adapting learned pro-
grams to new contexts. After each successful exe-
cution, natural programming learns by improving
search, rather than memorizing the solution se-
quence of commands. Simulated studies and a hu-
man experiment (n=360) on a simple crafting en-
vironment demonstrate that natural programming
can robustly compose programs learned from dif-
ferent users and contexts, solving more complex
tasks when compared to baselines that maintain
libraries of command sequences.

1. Introduction
By compounding knowledge learned from different teachers,
a student can solve increasingly complex tasks. A typical
way which computers acquire knowledge from humans is
through programming – explicit instructions on how to do

*Equal contribution 1CSAIL, MIT, USA 2Autodesk
3Department of Psychology, UW-Madison, USA 4Department
of Brain and Cognitive Sciences, MIT, USA. Correspondence
to: Leonardo Hernandez Cano <leohc@mit.edu>, Yewen Pu
<yewen.pu@autodesk.com>.

Interactive Learning with Implicit Human Feedback Workshop at
ICML 2023

the task. With the advancement of Large Language Models
(LLMs), recent works have increasingly leveraged program-
matic representations of policies (Liang et al., 2022; Volum
et al., 2022) and planning (Huang et al., 2022; 2023; Sil-
ver et al., 2022), to take the advantage of LLMs’ ability
to connect programs to natural language intents. Under
these formulations, a human instructs the agent through
programming, either directly or with natural language, and
the agent executes the program by producing a sequence
of appropriate actions. Compared to learning from demon-
strations, end-to-end RL, and trajectory optimizations, pro-
grammatic learning is more generalizable (Inala et al., 2020;
Trivedi et al., 2021) and user-interaction efficient(Bunel
et al., 2018).

A key tenant of a well learned skill is its robustness in the
face of changing contexts. For instances: An agent operating
a robot in different environments (Mesesan et al., 2019; Lin
et al., 2019); A controller directing traffic in different hours
of the day(Padakandla, 2021); A software operating under
different dependencies(Garlan et al., 2009). As programs
are explicit sequences of commands, they are brittle when
the context changes. This brittleness accumulates in higher
level programs, as failure in any sub-program results in total
failure. As people tend to give context-specific instructions
(Sumers et al., 2022; Bonawitz et al., 2011) (i.e. “hard
coding a program” (Brown et al., 1998)), it is difficult to
compound programmatic knowledge learned from different
teachers and contexts (Garlan et al., 2009; Chaturvedi, 2019;
Taylor, 2010; AlOmar et al., 2020).

On the other hand, humans readily generalize skills learned
from different teachers and contexts. Recent works study-
ing human to human instruction generation (Tessler et al.,
2021a; Acquaviva et al., 2021; McCarthy et al., 2021b)
reveal that instead of giving overtly detailed procedures, hu-
mans successfully “program” each other by providing goals
and guidelines: The goal constraints the intended outcome;
The guidelines increases the chances of the listener finding
a solution. Work in situated actions (Suchman & Suchman,
2007) suggests that humans accomplish a task not by follow-
ing an exact plan, but by improvising to adapt to the context
at hand. Drawing inspirations from these concepts, we
present Natural Programming (NP), a novel programming

1

Building Community Driven Libraries of Natural Programs

Figure 1: An overview of Natural Programming in three generations on the CraftLite environment, with different users
and contexts. The crafting rule for a stick vary across generations, in the first generation, one needs to use a wood and
a plank, while in the second and third generations, one need to use just the wood. At each generation (green, blue, red),
the user programs the robot using a search problem, and the robot solves it via search, and builds a library of natural
programs – mappings from search problems to sequences of other search problems. In the third generation, the robot is
able to compose the rope program (learned from the first user) with the alternative stick program (learned from the second
user) to craft a bow.

system that interacts with an user using search problems –
consisting of a machine-interpretable goal1 and a natural
language hint. Given a search problem, NP searches for
a solution in the style of hierarchical planning (Kaelbling
& Lozano-Pérez, 2011; Konidaris et al., 2018; Silver et al.,
2021b; Devin et al., 2017), guided by the linguistic hint
using a LLM. By keeping a library of search problems, NP
allows itself to search for new solutions in different situ-
ations, while still benefiting from past knowledge gained
elsewhere.

This work makes the following contributions:

Formalism – Formalizing the problem of Generational Pro-
gramming under changing Contexts (GPC) to study how to
create a programmatic system that can learn from different
teachers and contexts.

System – Developing the Natural Programming (NP) sys-
tem, a novel programming system that maintains a library
of search problems to tackle the GPC problem.

Evaluation – Developing CraftLite, a simple yet fully
fledged programming environment to study the GPC prob-
lem at scale. Evaluation of our system against realistic

1e.g. input-output examples, assertions, constraints

baselines on both simulation and a large scale user study
(n=360, type=crowd-workers, total time=90 hours) demon-
strates that NP learns best from different users and contexts
2.

2. Related Works
We are concerned with the problem of creating a system that
can learn from different teachers and contexts through pro-
gramming. Programmatic policies, RL under non-stationary
environments, and library learning are key aspects of our
work. We highlight literature in these different areas to
provide contexts for our own work, which lies in the inter-
section of these fields.

Programs as Policies and Planners Programs are a sta-
ple representation for robot policies. Compared to end-to-
end policies, programmatic policies (Andreas et al., 2017;
Yang et al., 2021) are more generalizable (Inala et al., 2020;
Trivedi et al., 2021), interpretable (Zhan et al., 2020; Bastani
et al., 2018), and easier for humans to communicate (Bunel
et al., 2018). Likewise, it is customary for planners (Shiarlis

2We will open source the CraftLite environment and all
the collected user-interaction dataset as well

2

Building Community Driven Libraries of Natural Programs

et al., 2018; Konidaris et al., 2018; Silver et al., 2021a) to
adopt a programmatic representation. With the advance-
ment of LLMs, recent works have increasingly embraced a
programmatic representation in policy (Liang et al., 2022;
Volum et al., 2022) and planning (Huang et al., 2022; 2023;
Silver et al., 2022), to take the advantage of LLMs’ ability
to translate between natural languages and programs.

RL and Planning with Changing Dynamics The robust
operation of agents under changing dynamics (Hallak et al.,
2015; Padakandla, 2021; Choi, 2000; Xie et al., 2022) is
of crucial importance in realistic scenarios. Methods such
as (Banerjee et al., 2017; Mesesan et al., 2019; Lin et al.,
2019) calibrate a learned policy to adapt to novel environ-
ments, while (Arumugam et al., 2017; 2019; Kaelbling,
1993; Squire et al., 2015; Bodik et al., 2010) maintains
a hierarchy of goal representations, allowing the agent to
re-plan as environments change.

Library Learning In library learning, a system continu-
ally grows a library of programs, becoming more competent
in solving complex tasks over time. The library learning
can be self-driven (Ellis et al., 2020), guided by language
(Wong et al., 2021), or in direct interactions with a com-
munity of users (Wang et al., 2017; 2016; McCarthy et al.,
2021a; Karamcheti et al., 2020).

Overall Compared to works in robust policy and planning,
we focus on interactive learning from users as a mean of
acquiring new abstractions and search strategies. Compared
to works in library learning, we focus on goal driven task
decompositions to account for changing contexts. Task-
oriented dialogue systems (Suhr et al., 2019; Fast et al.,
2018; Wang et al., 2015) are different from our work as they
do not perform library learning 3.

3. Generational Programming under
Changing Contexts

We first define the general problem of generational learning
under changing contexts, then extend it to the setting where
the learning takes the form of programming.

3.1. Generational Learning under changing Contexts
(GLC)

A GLC problem is a tuple (U ,G,S, T ,M), consisting of
sequences (representing different generations) of users
U = u1 . . . un, goals G = g1 . . . gn, starting states
S = s1 . . . sn, dynamics T = t1 . . . tn, and a contextual
markov decision process CMDP M. This work considers
the setting where the set of goals G is finite and enumerable,

3i.e. these systems cannot acquire higher level programs over
time

and the every dynamics t ∈ T deterministic.

Contextual Markov Decision Process The CMDP (Hallak
et al., 2015) maps a context c = (g, s, t) into a specific
MDP M(g, s, t) = (S,A, s, t, Rg), where S and A are the
set of states and actions, and s, t, Rg are a specific starting
state, transition function, and goal-conditioned reward
function respectively. Each generation i has a generation-
specific MDP Mi = (S,A, si, ti, Rgi) where S and A are
fixed across generations, while si, ti, Rgi changes across
generations. An MDP Mi can receive a sequence of actions
[a1 . . . ak] and produce a final state Mi([a1 . . . ak]) = s′i
using the transition function. The goal g is a predicate
function over states g(s) ∈ {0, 1}.

Generational Learning Let A[E] denotes a learning agent
A parameterized by experience E. At each generation i, the
agent A[Ei] interacts with the user ui within environment
M(ci), which produces a reward and a new experience
(ri, ei) = interact(ui,A[Ei],M(ci)). The agent learns
by growing its experience Ei+1 = Ei ∪ {ei}, which is
passed onto the next generation. The objective of GLC is to
maximize cumulative reward r =

∑
i ri.

3.2. Generational Programming under changing
Contexts (GPC)

A GPC problem is a specific kind of GLC where the in-
teraction takes place via programming, and the agent, a
programming system, learns from experience by building
a library. See Figure 2. Specifically, given a context ci,
The user constructs a program pi. The programming sys-
tem A[Li], parameterized by the library Li, executes the
program, producing a action sequence and an experience
ai, ei. The sequence ai is carried out on the environment
M(ci)(ai), resulting in a reward if the goal g is satisfied
g(M(ci)(ai)). The agent learns from the experience ei by
building the new library Li+1. The programming systems
in a GPC differ by their respective forms of programs, how
they execute these programs, and how they maintain and
grow their libraries – the crux of this work.

4. Programming Systems
We describe two baseline programming systems, direct pro-
gramming and direct synthesis, that keep libraries of func-
tions. For each, we explain the forms of programs they
require, how they execute a program to produce an action
sequence, and how they grow libraries across generations.

4.1. Direct Programming (DP)

DP emulates library building in traditional programming,
where a library of functions can be accessed and expanded
by a community of users. For this work, we consider a
simple family programs without variables and control flows

3

Building Community Driven Libraries of Natural Programs

Figure 2: The GPC (generational programming under changing context) problem at a particular generation. Given a
particular context, the user writes a program. This program is then executed by the agent (a programming system) producing
a sequence of actions, which is then carried out on the contextual MDP, resulting in a reward. The agent also generates an
experience, allowing it to build a better library for future generations.

4. The library L is a mapping from a function name f.name
– a string, to a function body f.body – a sequence of actions.
L[name] = [a1 . . . ak], ai ∈ A. The user u produces a
program p by reasoning over the context c and the library
L. u : (c, L) → p. The program p can take two forms: (1)
executing an existing function; (2) defining a new function.

Execution The program is a single string name, which the
user selects from the library L, and the corresponding action
sequence L[name] is produced. No experience is produced
by the system.

Function Definition The user gives DP a mapping
namenew → [name1 . . . namek]. The system produces
a concatenated action sequence anew = L[name1] +
· · ·+ L[namek]. The system also produces an experience
e = namenew → anew.

Generational Library Learning DP starts with the library
of primitives L1 = LA = {“a1” → [a1] . . . “an” →
[an] ∀ai ∈ A}, where all the actions in A maybe referred
to by their names. DP grows the library as user adds new
functions to it Li+1 = Li ∪ {namenew → anew}.

4.2. Direct Synthesis (DS)

DS augments DP with language-guided program synthesis,
where the system searches the library for a satisfying se-
quence. DS maintains a library of functions L same as in
DP, and in addition, it is made aware of the set of goals G
and can query the environment M(c) as a black box5.

Programs are Search Problems The user u programs DS
by querying it with a search problem q = (g, hint) ∈ Q,
where Q = G×NL, a cross product of all goals and all nat-
ural language strings. Specifically, u : (g, s, t) → (g, hint).
Instead of browsing the library L, the user specifies the goal
g to DS directly, along with a hint on how to achieve it.

4think of a system of macros
5i.e. the dynamics of M(c) hidden from the agent, but it can

take actions and observe outcomes

Execution via Search DS searches for an action sequence
a such that, once carried out in M(c), satisfies the goal g.
In a typical program synthesis fashion (Devin et al., 2017;
Ellis et al., 2020), it performs rejection sampling6:

Algorithm 1: DS Execution
DS ((g , h i n t) , M(c) , L) =

f o r Li in L1, L2, . . . , Lmax_len :
r e p e a t n _ i t e r t i m e s :

f_1 . . . f _ i ∼ propose(f1 . . . fi ∈ Li|(g, hint), Li)
a = f_1 . body + . . . + f _ i . body
i f g(M(c)(a)) :

re turn a
re turn F a i l .

The search is incremental, where DS attempts to first find
a single program f ∈ L that satisfies the goal g, and when
that fails, expands the search to [f1, f2] ∈ L2, and so on.

Propose The rejection sampling is guided by a propose
function in the manner of language-guided synthesis(Wong
et al., 2021; Li et al., 2022), where depending on the lin-
guistic hint, certain combinations of functions become more
likely to be sampled. This is crucial as the search space of Li

grows exponentially as i increases. The difficulty of having
a good propose function is a lack of data – prior approaches
such as (Wong et al., 2021; Li et al., 2022; Suhr et al., 2019;
Wang et al., 2015) required significant labeling efforts of
paired instances of natural-language to programs (in our
case, function sequences). Instead, we look to pretrained
LLMs as a source of prior knowledge. Specifically, we con-
sider two “backends” of our propose function, one based on
semantic similarities, the other based on prompting:

proposesim(f1 . . . fi|(g, hint), Li)

∝∥embedLLM (f1.name+ · · ·+ fi.name)

−embedLLM (hint)∥
proposeprompt(f1 . . . fi|(g, hint), Li)

=LLM(prompt[hint,L])

proposesim ranks the function composition f1 . . . fi based

6most program synthesis approaches adopt the generate and
check framework

4

Building Community Driven Libraries of Natural Programs

on how similar their concatenated strings are is to the
hint, based on their embedded distances under a LLM.
proposeprompt simply gives an instruction tuned LLM with
the hint and a subset of the library’s content, and queries
the LLM for a sequence of function names. Keep in mind
that it is not the contribution of this work to find the best
implementation for the propose function, but rather, we
highlight that our approaches are compatible with standard
techniques.

Generational Library Learning DS starts with a library of
primitives L1 = LA. Given a search problem q = (g, hint),
DS only produces a sequence a when g(M(c)(a)), and
e = hint → a is added to the library. Doing so achieves
compression (Ellis et al., 2020) – making a long sequence of
functions (that is difficult to search for) to a single function.

4.3. Brittleness of Functions

Consider a particular sequence a1 made under a particular
CMDP M(c1) which satisfies the goal g. While sequence
a1 satisfies the goal g(M(c1)(a1)), the same sequence is
unlikely to satisfy the same goal under a different context
c2, i.e. g(M(c1)(a1)) ̸= g(M(c2)(a1)). As a result, when
contexts change, much of the functions in the library L can
no longer satisfy the goals they are written for.

5. Natural Programming
Notice the discrepancy in the DS system: it takes in search
problems, yet maintains a library of a different kind – a
library of explicit action sequences. What if we maintain
a library of search problems as well? A natural program
np ∈ P is a mapping from a search problem to a sequence
of primitives or other search problems. P = {Q ⇒ (LA ∪
Q)× · · · × (LA ∪Q)}. The Natural Programming system
maintains a library of natural programs L ⊂ P .

Programs are Search Problems The interface of DS and
NP are exactly the same – given a context, an user produces
a search problem q ∈ Q for the system.

Execution via Recursive Decomposition Given q =
(g, hint), NP searches for a satisfying action sequence in
the manner of hierarchical planning similar to the MAXQ
(Dietterich, 2000) algorithm. For simplicity, we have NP
only returning a satisfying final state s′ or Fail if it cannot
finds it – the satisfying action sequence a can be recov-
ered by instrumenting book-keeping variables. We also use
M(c)(s, a) to denote taking an action step a with a starting
state s on M(c).

Algorithm 2: NP Execution
NP(s , q , L , M(c)) :

case q i s Ac t i on :
re turn M(c) (s , a)

case q i s (g , h i n t) :
decompose = Queue ([p r o p o s e (q ,L) . . .n _ t i m e s])
q s _ i = decompose . pop () (l a b e l : A)
c u r _ s t a t e = s
f o r q s _ i _ j in q s _ i :

n x t _ s t a t e = NP(
c u r _ s t a t e , q s _ i _ j , L , M(c)

)
i f n e x t _ s t a t e i s not F a i l :

c u r _ s t a t e = n x t _ s t a t e
e l s e :

go to (A)
i f q . g o a l (c u r _ s t a t e) :

re turn c u r _ s t a t e
e l s e i f decompose i s empty :

re turn F a i l .
e l s e :

go to (A)

The most salient aspect of the NP execution is the recursive
call to NP itself7. Thus, unlike DS, NP can keep decompos-
ing until a satisfying sequence is found. Both DS and NP
share the same propose implementation. In practice, we
implement Algorithm 2 with a priority queue and caching
to avoid redundant executions.

Generational Library Learning When Algorithm 2 finds
a satisfying a, NP produces an experience in the form of
a search tree (Figure 1, middle row), consisting of the cor-
rectly chosen decomposition steps. Each correct decompo-
sition is a mapping q → q1 . . . qj ∈ P . They are added to L
(Figure 1).

6. CraftLite
To study the effects of different programming systems in
the context of GPC, we introduce a simple programming
environment, CraftLite, with the following desiderata:
(1) Can be used as a multi-generational GPC problem. (2)
Crowd workers can consistently learn how to “program”
it in under 5 minutes – so a large scale user study would
not be prohibitively expensive. (3) Has a real-time (∼2s)
responsiveness to accommodate for end-user interactions.

6.1. CraftLite as a Conditional MDP

State A state consists of an inventory of multiple items, two
crafting input slots, and a single crafting output. There 29
total possible items in CraftLite.

Action There are only 2 kinds of actions, input_x where
x is an item name, and craft. input_x moves an ex-
isting item in the inventory to the input slots, and craft
moves the transformed item in the output slot back to the
inventory, consuming the inputs. Thus, there are 30 total
actions.

7the goto is only there for ease of explanation!

5

Building Community Driven Libraries of Natural Programs

Dynamics The dynamic is dictated by the recipe book,
which dictates which two input items can be successfully
transformed into an output item. Out of the 29 items, 4 are
“raw materials”, and 25 are “craftable items” with 2 possible
crafting rules: For instance, a stick is made with rock+plank
in one version while wood+plank in another. A recipe book
can be randomly generated by choosing one version of the
crafting rules – there are 225 possible recipe books total.
Depending on the particular recipe book, the most complex
item can take up to 87 action steps. Thus, the raw command
sequence complexity of CraftLite is 3087.

Goal is a list of goal items, which generates a reward
when it is first added to the inventory.

6.2. The GPC Problem using CraftLite

The GPC set up for CraftLite is slightly different from
that defined in Section 3 to allow for an user to interact with
a programming system for an extended period of time in the
same environment.

Session A session gi at generation i consists of: an user ui,
a programming system with library A[Li], and a context
ci. The context ci = (gi, s0, ti) consists of: a list of goal
items gi = g1i . . . g

r
i , the starting state si, and a randomly

generated recipe book ti. At the start of the interaction, a
CMDP M(ci) is created. Within a specified time limit (e.g.,
10 minutes), a user ui interacts with A[Li] to craft as many
goal items as possible under the same environment M(ci).

Chains The participants are organized into “cultural
chains”(Tamariz & Kirby, 2016; Tessler et al., 2021b) col-
laborating with the same programming system. A chain is
a sequence sessions: (u1,A, c1), . . . (un,A, cn). The pro-
gramming system starts with the initial library L1. This
library is updated after every interaction with an user, and
persists to the next generation.

Batch A batch consists of multiple chains (one for each pro-
gramming system) with a paired sequence of contexts. For
instance, the following is a batch of 2 conditions A1,A2,
2n participants, and paired contexts c1 . . . cn:

(u1,A1, c1), . . . , (un,A1, cn);

(un+1,A2, c1), . . . , (un+n,A2, cn);

6.3. User Interface of CraftLite

The user interface of CraftLite consists of a left pro-
grammatic panel based on Blockly (Pasternak et al., 2017),
and a right panel showing the current state. See Figure 3

7. Experiments
We seek to answer the following research questions.
RQ1: Is NP effective at solving the GPC problems in

CraftLite? RQ2: Does the capability of NP improve at
a faster rate across generations? RQ3: Does NP allows the
user to achieve more tasks with fewer efforts?

7.1. Simulated Study

We conduct a simulation study with a large number of simu-
lated, idealized users to study the relative effectiveness of
NP vs DS as a function of changing dynamics.

Controlling Dynamics In CraftLite, every craftable
item has 2 possible rules. We can control how much dy-
namics can vary from one generation to next by adjusting
the probability r, of how likely the second rule is chosen.
A r = 0 would cause the generated recipe to only contain
the first rule for every item, i.e. no dynamic changes across
generations, while a r = 0.5 will uniformly sample one
of the 225 possible recipe books – the most difficult setup
where dynamics changes most.

Batches At every generation, the context contains: (1) A
set of 6 randomly chosen “leaf items” were used as goals
– craftable items that are not required to craft other items.
(2) The starting state consisting of 4 raw materials. (3) A
randomly generated recipe with a particular r value. A batch
consists of 20 generations of 2 conditions, DS vs NP, where
the same generation shares the context.

(usim,DS, c1), . . . , (usim,DS, c20);

(usim,NP, c1), . . . , (usim,NP, c20)

For each 3 value of r = [0, 0.25, 0.5], we generate 5 batches
each.

Simulated Users The simulated user is idealized. It will at-
tempt first to craft a given goal item, and wait some amount
of time until the solver succeeds or fails. If the solver suc-
ceeds, it moves onto the next item. If the solver fails, it
recursively attempts to craft a pre-requisite item. We do not
simulate an user for DP, and defer evaluation of DP to a real
human experiment.

Session Each session has a total of 2 minutes time limit, and
the solver timeout after 10 seconds.

Results RQ1: As we can see, when dynamics are kept
constant (r = 0.0), DS and NP performs identically on
CraftLite. However, as dynamics vary more (r = 0.25,
r = 0.50), the performance of NP is superior to that of
DS (Figure 4). RQ2: Similarly, we find NP improves at a
faster rate across generations compared to DS under more
dynamics variations. RQ3: Because these are simulated
users, we defer the measurement of user efforts to the more
realistic scenario of a human experiment.

Propose Back-end We found that for CraftLite, even if
we give a lenient solver timeout of 10 seconds, enough for a

6

Building Community Driven Libraries of Natural Programs

Figure 3: The CraftLite UI. The DP programming system allows the user to manually define new functions, and browse
a library of existing functions. The DS / NP system only allows user to give a search problem. The game state shows an
inventory of current items, and a list of goal items to be completed. All systems have a recipe book the user can browse,
which encodes the dynamics.

Figure 4: Simulation on how different programming systems perform under different amount of dynamic changes across
generations. Total of 600 idealized simulated users. r = 0.0 no dynamic change and r = 0.5 most dynamic change. Error
bars are 95% CIs (nboot=1000), dots represent individual sessions outcomes.

prompting back-end to give a response, the similarity based
propose function is always faster. A comparison of semantic-
distance vs prompting can be found in the supplement.

7.2. Human Experiment

Procedure We recruited 360 participants from the Prolific
crowdsourcing platform. Participants were recruited from
the U.K. and the U.S., excluding people without English
proficiency. We paid an average of $12.06 USD per hour,
including bonuses for $0.4 USD per “goal”. In total, we ran
360 sessions across 12 batches of paired contexts, and of
a length of 12 generations. 6 batches containing all three
conditions (DP, DS, NP) and 6 only containing the two of
greatest interest (DS, NP). Each session is 10 minutes. The
DS and NP solver is set to have a maximum timeout of 30

seconds, but the user can cancel the solver at any point.

7.2.1. RESULTS

RQ1: More items are built overall with NP Across all
batches and generations, we find that NP allows people to
build the most goal items overall (Figure 5A; DP mean
= 1.7 items, 95%CI = [1.6, 1.9], DS mean = 2.4 items,
95%CI = [2.3, 2.6], NP mean = 2.9 items, 95%CI =
[2.7, 3.1]). Both synthesis-based systems perform signif-
icantly better overall than direct programming (t(71) =
5.6, p < 0.001 for DP vs. DS; t(71) = 7.9, p < 0.001 for
DP vs. NP, paired). Compared to the DS, NP produced
significantly more items (t(143) = 4.7, p < 0.001).

7

Building Community Driven Libraries of Natural Programs

Direct Programming Direct Synthesis Natural Programming

1

2

3

4

5

6

DP DS NP
condition

ite

m
s

bu
ilt

A

1

2

3

4

5

6

1 3 5 7 9 11
generation in chain

ite

m
s

bu
ilt

B

1

2

3

4

5

6

10 30 100 300
interactions

 (individual effort)

ite

m
s

bu
ilt

C

1

2

3

4

5

6

0 50 100 150 200
library size

 (community effort)

ite

m
s

bu
ilt

D

Figure 5: Natural programming (NP) enables (A) more items to be build overall, (B) improves significantly as successive
generations interact with the system, and (C-D) reduces the effort required to reach the same performance. Error bars are
95% CIs; low-transparency dots represent individual sessions; low-transparency lines represent regression fits for individual
chains.

RQ2: NP chains improve more rapidly Next, we con-
sider how NP improves as additional users in a chain in-
teract with the system (Figure 5B). We fit a (Bayesian)
mixed-effects linear regression model predicting the num-
ber of items built as a function of the generation in the chain
(integer from 1 to 12), the programming system (categor-
ical, NP vs. DS vs. DP), and corresponding interaction
terms. First, examining the NP condition alone, we found
that performance improved significantly across generations,
(b = 6.24, 95% credible interval = [3.3, 9.3]). We found
that this slope was meaningfully larger than the DS con-
dition (diff = +3.4, 95% credible interval = [−0.5, 7.1])
and the DP condition (diff = 8.6, 95% credible interval
= [3.5, 13.5]).

RQ3: NP requires less effort What properties of NP en-
able these performance benefits? We know it is not due
to the difference of user interface, as DS and NP uses ex-
actly the same interface. In this section, we argue instead
that NP reduces the amount of effort required to obtain the
same results. We tested this effect by running Bayesian
mixed-effects regressions predicting the number of items
built as a function of effort and the programming system be-
ing used. We consider two different metrics of effort. First,
we examine individual effort, the (log) number of “submis-
sions” – registered every time a user attempts to execute
a program – made by a user to the programming system
(Figure 5C). At a given level of effort, we found that partic-
ipants in the NP condition were able to craft significantly
more items than those in DP condition (diff = 1.25 items,
95%CI = [0.8, 1.7]) or the DS condition (diff = 0.42 items,

95%CI = [0.2, 0.6]). Concretely, among participants that
crafted exactly 2 items, DP required an average of 156 sub-
missions, DS required 81 submissions, and NP only required
63 submissions. Similar results were found for collective
effort – the total library size (i.e., unique and successful pre-
vious interactions) that has accumulated at the given point
in the chain (Figure 5D).

8. Conclusion
We define a new class of problems, GPC, to study how an
agent can learn from different teachers and contexts pro-
grammatically. We developed the NP system – based on a
hierarchical planner that learns new abstractions and decom-
position rules from users. We demonstrate NP is efficient in
solving GPC problems in the CraftLite domain through
both simulations and a large (n=360) user study.

Limitations The immediate limitations of this work is
CraftLite is rudimentary in its complexity. Scaling up
NP requires better propose implementations – for instance,
a faster LLM+prompting, and taking in current state as
context. Scaling up GPC requires a richer task domain
than CraftLite, yet still making it intuitive for end-users
for a systematic evaluation. Ultimately, a richer task do-
main will cost more money. The more subtle limitation
of this work is the perfect mutual understanding of goals
between user to agents (DS and NP). This is possible in
CraftLite, but more generally, this is the complex topic
of AI-alignment(Gabriel, 2020). How to robustly compose
knowledge when under imperfect mutual understandings of
goals is an exciting field for future research.

8

Building Community Driven Libraries of Natural Programs

References
Acquaviva, S., Pu, Y., Kryven, M., Wong, C., Ecanow, G. E.,

Nye, M., Sechopoulos, T., Tessler, M. H., and Tenenbaum,
J. B. Communicating natural programs to humans and
machines. arXiv preprint arXiv:2106.07824, 2021.

AlOmar, E. A., Rodriguez, P. T., Bowman, J., Wang, T.,
Adepoju, B., Lopez, K., Newman, C., Ouni, A., and
Mkaouer, M. W. How do developers refactor code to
improve code reusability? In Reuse in Emerging Software
Engineering Practices: 19th International Conference on
Software and Systems Reuse, ICSR 2020, Hammamet,
Tunisia, December 2–4, 2020, Proceedings 19, pp. 261–
276. Springer, 2020.

Andreas, J., Klein, D., and Levine, S. Modular multitask
reinforcement learning with policy sketches. In Interna-
tional Conference on Machine Learning, pp. 166–175.
PMLR, 2017.

Arumugam, D., Karamcheti, S., Gopalan, N., Wong, L. L.,
and Tellex, S. Accurately and efficiently interpreting
human-robot instructions of varying granularities. arXiv
preprint arXiv:1704.06616, 2017.

Arumugam, D., Karamcheti, S., Gopalan, N., Williams,
E. C., Rhee, M., Wong, L. L., and Tellex, S. Grounding
natural language instructions to semantic goal represen-
tations for abstraction and generalization. Autonomous
Robots, 43:449–468, 2019.

Banerjee, T., Liu, M., and How, J. P. Quickest change
detection approach to optimal control in markov decision
processes with model changes. In 2017 American control
conference (ACC), pp. 399–405. IEEE, 2017.

Bastani, O., Pu, Y., and Solar-Lezama, A. Verifiable rein-
forcement learning via policy extraction. Advances in
neural information processing systems, 31, 2018.

Bodik, R., Chandra, S., Galenson, J., Kimelman, D., Tung,
N., Barman, S., and Rodarmor, C. Programming with
angelic nondeterminism. In Proceedings of the 37th
annual ACM SIGPLAN-SIGACT symposium on Princi-
ples of programming languages, POPL ’10, pp. 339–
352, New York, NY, USA, January 2010. Association
for Computing Machinery. ISBN 978-1-60558-479-9.
doi: 10.1145/1706299.1706339. URL https://doi.
org/10.1145/1706299.1706339.

Bonawitz, E., Shafto, P., Gweon, H., Goodman, N. D.,
Spelke, E., and Schulz, L. The double-edged sword of
pedagogy: Instruction limits spontaneous exploration and
discovery. Cognition, 120(3):322–330, 2011.

Brown, W. J., Malveau, R. C., McCormick, H. W. S., and
Mowbray, T. J. AntiPatterns: Refactoring Software, Ar-
chitectures, and Projects in Crisis: Refactoring Software,
Architecture and Projects in Crisis. John Wiley and Sons,
1998.

Bunel, R., Hausknecht, M., Devlin, J., Singh, R., and
Kohli, P. Leveraging grammar and reinforcement
learning for neural program synthesis. arXiv preprint
arXiv:1805.04276, 2018.

Chaturvedi, S. On composition, Dec 2019. URL https:
//shalabh.com/programmable-systems/
on-composition.html.

Choi, P.-M. Reinforcement learning in nonstationary envi-
ronments. Hong Kong University of Science and Tech-
nology (Hong Kong), 2000.

Devin, C., Gupta, A., Darrell, T., Abbeel, P., and Levine, S.
Learning modular neural network policies for multi-task
and multi-robot transfer. In 2017 IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 2169–
2176, May 2017. doi: 10.1109/ICRA.2017.7989250.

Dietterich, T. G. Hierarchical reinforcement learning with
the maxq value function decomposition. Journal of artifi-
cial intelligence research, 13:227–303, 2000.

Ellis, K., Wong, C., Nye, M., Sable-Meyer, M., Cary, L.,
Morales, L., Hewitt, L., Solar-Lezama, A., and Tenen-
baum, J. B. Dreamcoder: Growing generalizable, inter-
pretable knowledge with wake-sleep bayesian program
learning. arXiv preprint arXiv:2006.08381, 2020.

Fast, E., Chen, B., Mendelsohn, J., Bassen, J., and Bernstein,
M. S. Iris: A conversational agent for complex tasks.
In Proceedings of the 2018 CHI conference on human
factors in computing systems, pp. 1–12, 2018.

Gabriel, I. Artificial intelligence, values, and alignment.
Minds and machines, 30(3):411–437, 2020.

Garlan, D., Allen, R., and Ockerbloom, J. Architectural
mismatch: Why reuse is still so hard. IEEE software, 26
(4):66–69, 2009.

Hallak, A., Di Castro, D., and Mannor, S. Con-
textual markov decision processes. arXiv preprint
arXiv:1502.02259, 2015.

Huang, W., Abbeel, P., Pathak, D., and Mordatch, I. Lan-
guage models as zero-shot planners: Extracting action-
able knowledge for embodied agents. arXiv preprint
arXiv:2201.07207, 2022.

Huang, W., Xia, F., Shah, D., Driess, D., Zeng, A., Lu,
Y., Florence, P., Mordatch, I., Levine, S., Hausman,

9

Building Community Driven Libraries of Natural Programs

K., et al. Grounded decoding: Guiding text generation
with grounded models for robot control. arXiv preprint
arXiv:2303.00855, 2023.

Inala, J. P., Bastani, O., Tavares, Z., and Solar-Lezama,
A. Synthesizing programmatic policies that inductively
generalize. In 8th International Conference on Learning
Representations, 2020.

Kaelbling, L. P. Learning to achieve goals. In IJCAI, vol-
ume 2, pp. 1094–8. Citeseer, 1993.

Kaelbling, L. P. and Lozano-Pérez, T. Hierarchical task and
motion planning in the now. In 2011 IEEE International
Conference on Robotics and Automation, pp. 1470–1477,
May 2011. doi: 10.1109/ICRA.2011.5980391. ISSN:
1050-4729.

Karamcheti, S., Sadigh, D., and Liang, P. Learning adap-
tive language interfaces through decomposition. arXiv
preprint arXiv:2010.05190, 2020.

Konidaris, G., Kaelbling, L. P., and Lozano-Perez, T. From
skills to symbols: Learning symbolic representations for
abstract high-level planning. Journal of Artificial Intelli-
gence Research, 61:215–289, 2018.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J.,
Leblond, R., Eccles, T., Keeling, J., Gimeno, F., Dal Lago,
A., et al. Competition-level code generation with alpha-
code. Science, 378(6624):1092–1097, 2022.

Liang, J., Huang, W., Xia, F., Xu, P., Hausman, K., Ichter,
B., Florence, P., and Zeng, A. Code as policies: Language
model programs for embodied control. arXiv preprint
arXiv:2209.07753, 2022.

Lin, X., Guo, P., Florensa, C., and Held, D. Adaptive vari-
ance for changing sparse-reward environments. In 2019
International Conference on Robotics and Automation
(ICRA), pp. 3210–3216. IEEE, 2019.

McCarthy, W., Hawkins, R., Holdaway, C., Wang, H., and
Fan, J. Learning to communicate about shared proce-
dural abstractions. In Proceedings of the 43rd Annual
Conference of the Cognitive Science Society, 2021a.

McCarthy, W. P., Hawkins, R., Wang, H., Holdaway, C.,
and Fan, J. E. Learning to communicate about shared
procedural abstractions. In Proceedings of the Annual
Meeting of the Cognitive Science Society, volume 43,
2021b.

Mesesan, G., Englsberger, J., Garofalo, G., Ott, C., and
Albu-Schäffer, A. Dynamic walking on compliant and
uneven terrain using dcm and passivity-based whole-body
control. In 2019 IEEE-RAS 19th International Con-
ference on Humanoid Robots (Humanoids), pp. 25–32.
IEEE, 2019.

Padakandla, S. A survey of reinforcement learning algo-
rithms for dynamically varying environments. ACM
Comput. Surv., 54(6), jul 2021. ISSN 0360-0300.
doi: 10.1145/3459991. URL https://doi.org/10.
1145/3459991.

Pasternak, E., Fenichel, R., and Marshall, A. N. Tips for
creating a block language with blockly. In 2017 IEEE
Blocks and Beyond Workshop (B&B), pp. 21–24, 2017.
doi: 10.1109/BLOCKS.2017.8120404.

Shiarlis, K., Wulfmeier, M., Salter, S., Whiteson, S., and
Posner, I. TACO: Learning task decomposition via tempo-
ral alignment for control. In Dy, J. and Krause, A. (eds.),
Proceedings of the 35th International Conference on Ma-
chine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 4654–4663. PMLR, 10–15 Jul
2018. URL https://proceedings.mlr.press/
v80/shiarlis18a.html.

Silver, T., Chitnis, R., Tenenbaum, J., Kaelbling, L. P., and
Lozano-Pérez, T. Learning symbolic operators for task
and motion planning. In 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp.
3182–3189. IEEE, 2021a.

Silver, T., Chitnis, R., Tenenbaum, J., Kaelbling, L. P., and
Lozano-Pérez, T. Learning Symbolic Operators for Task
and Motion Planning. In 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp.
3182–3189, September 2021b. doi: 10.1109/IROS51168.
2021.9635941. ISSN: 2153-0866.

Silver, T., Hariprasad, V., Shuttleworth, R. S., Kumar, N.,
Lozano-Pérez, T., and Kaelbling, L. P. Pddl planning
with pretrained large language models. In NeurIPS 2022
Foundation Models for Decision Making Workshop, 2022.

Squire, S., Tellex, S., Arumugam, D., and Yang, L. Ground-
ing english commands to reward functions. In Robotics:
Science and Systems, 2015.

Suchman, L. and Suchman, L. A. Human-machine reconfig-
urations: Plans and situated actions. Cambridge univer-
sity press, 2007.

Suhr, A., Yan, C., Schluger, J., Yu, S., Khader, H.,
Mouallem, M., Zhang, I., and Artzi, Y. Executing in-
structions in situated collaborative interactions. arXiv
preprint arXiv:1910.03655, 2019.

Sumers, T., Hawkins, R., Ho, M. K., Griffiths, T., and
Hadfield-Menell, D. How to talk so ai will learn: Instruc-
tions, descriptions, and autonomy. Advances in Neural
Information Processing Systems, 35:34762–34775, 2022.

Tamariz, M. and Kirby, S. The cultural evolution of lan-
guage. Current Opinion in Psychology, 8:37–43, 2016.

10

Building Community Driven Libraries of Natural Programs

Taylor, M. Whatever happened to pro-
gramming?, Mar 2010. URL https:
//reprog.wordpress.com/2010/03/03/
whatever-happened-to-programming/.

Tessler, M. H., Madeano, J., Tsividis, P. A., Harper, B.,
Goodman, N. D., and Tenenbaum, J. B. Learning to solve
complex tasks by growing knowledge culturally across
generations. arXiv preprint arXiv:2107.13377, 2021a.

Tessler, M. H., Tsividis, P. A., Madeano, J., Harper, B., and
Tenenbaum, J. B. Growing knowledge culturally across
generations to solve novel, complex tasks. arXiv preprint
arXiv:2107.13377, 2021b.

Trivedi, D., Zhang, J., Sun, S.-H., and Lim, J. J. Learning
to synthesize programs as interpretable and generaliz-
able policies. Advances in neural information processing
systems, 34:25146–25163, 2021.

Volum, R., Rao, S., Xu, M., DesGarennes, G. A., Brockett,
C., Van Durme, B., Deng, O., Malhotra, A., and Dolan, B.
Craft an iron sword: Dynamically generating interactive
game characters by prompting large language models
tuned on code. In The Third Wordplay: When Language
Meets Games Workshop, 2022.

Wang, S. I., Liang, P., and Manning, C. D. Learning lan-
guage games through interaction. In Proceedings of the
54th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pp. 2368–
2378, 2016.

Wang, S. I., Ginn, S., Liang, P., and Manning, C. D. Natu-
ralizing a programming language via interactive learning.
In Proceedings of the 55th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long
Papers), pp. 929–938, 2017.

Wang, Y., Berant, J., and Liang, P. Building a semantic
parser overnight. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pp. 1332–
1342, 2015.

Wong, C., Ellis, K. M., Tenenbaum, J., and Andreas, J.
Leveraging language to learn program abstractions and
search heuristics. In International Conference on Ma-
chine Learning, pp. 11193–11204. PMLR, 2021.

Xie, A., Sodhani, S., Finn, C., Pineau, J., and Zhang, A.
Robust policy learning over multiple uncertainty sets.
In International Conference on Machine Learning, pp.
24414–24429. PMLR, 2022.

Yang, Y., Inala, J. P., Bastani, O., Pu, Y., Solar-Lezama, A.,
and Rinard, M. Program synthesis guided reinforcement
learning for partially observed environments. Advances in
neural information processing systems, 34:29669–29683,
2021.

Zhan, E., Tseng, A., Yue, Y., Swaminathan, A., and
Hausknecht, M. Learning calibratable policies using
programmatic style-consistency. In International Con-
ference on Machine Learning, pp. 11001–11011. PMLR,
2020.

11

