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Abstract
Foundation models are first pre-trained on vast
unsupervised datasets and then fine-tuned on la-
beled data. Reinforcement learning, notably from
human feedback (RLHF), can further align the
network with the intended usage. Yet the im-
perfections in the proxy reward may hinder the
training and lead to suboptimal results; the diver-
sity of objectives in real-world tasks and human
opinions exacerbate the issue. This paper pro-
poses embracing the heterogeneity of diverse re-
wards by following a multi-policy strategy. Rather
than focusing on a single a priori reward, we aim
for Pareto-optimal generalization across the en-
tire space of preferences. To this end, we pro-
pose rewarded soup, first specializing multiple
networks independently (one for each proxy re-
ward) and then interpolating their weights lin-
early. This succeeds empirically because we show
that the weights remain linearly connected when
fine-tuned on diverse rewards from a shared pre-
trained initialization. We demonstrate the effec-
tiveness of our approach for text-to-text (summa-
rization, helpful assistant), text-image (image cap-
tioning, text-to-image generation, visual ground-
ing), and control (locomotion) tasks. We hope to
enhance the alignment of deep models, and how
they interact with the world in all its diversity.

1. Introduction
Foundation models (Bommasani et al., 2021) have emerged
as the standard paradigm to learn neural networks’ weights.
They are typically first pre-trained through self-supervision
(Devlin et al., 2019; Brown et al., 2020; Caron et al., 2021;
Radford et al., 2021) and then fine-tuned (Oquab et al., 2014;
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Yosinski et al., 2014) via supervised learning (Vapnik, 1999).
Yet, collecting labels is expensive, and thus supervision may
not cover all possibilities and fail to perfectly align (Amodei
et al., 2016; Taylor et al., 2016; Ngo, 2022) the trained
network with the intended applications. Recent works (Sti-
ennon et al., 2020; Ouyang et al., 2022; Pinto et al., 2023)
showed that deep reinforcement learning (DRL) helps by
learning from various types of rewards. A prominent exam-
ple is reinforcement learning from human feedback (RLHF)
(Stiennon et al., 2020; Christiano et al., 2017; Ziegler et al.,
2019; Wu et al., 2021), which appears as the current go-to
strategy to refine large language models (LLMs) into con-
versational agents such as ChatGPT (Ouyang et al., 2022;
OpenAI, 2023). After pre-training on next token prediction
(Radford et al., 2018), the LLMs are fine-tuned to follow
instructions (Wei et al., 2022; Wang et al., 2022c; Taori
et al., 2023) before reward maximization. This RL strat-
egy enhances alignment by evaluating the entire generated
sentence instead of each token independently, handling the
diversity of correct answers and allowing for negative feed-
back (Goldberg, 2023). Similar strategies have been useful
in computer vision (CV) (Pinto et al., 2023; Rennie et al.,
2017), for example to integrate human aesthetics into image
generation (Lee et al., 2023; Wu et al., 2023b).

Diversity of proxy rewards. RL is usually seen as more
challenging than supervised training (Dulac-Arnold et al.,
2021), notably because the real reward—ideally reflecting
the users’ preferences—is often not specified at training
time. Proxy rewards are therefore developed to guide the
learning, either as hand-engineered metrics (Papineni et al.,
2002; Lin & Hovy, 2003; Vedantam et al., 2015) or more
recently in RLHF as models trained to reflect human pref-
erences (Christiano et al., 2017; Kwon et al., 2023; Xu
et al., 2023). Nonetheless, designing reliable proxy re-
wards for evaluation is difficult. This reward misspecifi-
cation (Amodei et al., 2016; Pan et al., 2022) between the
proxy reward and the users’ actual rewards can lead to un-
foreseen consequences (Michaud et al., 2020). Moreover,
the diversity of objectives in real-world applications com-
plicates the challenge. In particular, human opinions can
vary significantly (Wildavsky, 1987; Coello, 2000; Schwartz
et al., 2012) on subjects such as aesthetics (Nadal & Chat-
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Figure 1: We detail the steps in rewarded soup (RS). After un-
supervised pre-training and supervised fine-tuning, we launch N
independent RL fine-tunings on the proxy rewards {Ri}Ni=1. Then
we combine the trained networks by interpolation in the weight
space. The final weights are adapted at test time by selecting λ.

terjee, 2019), politics or fairness (Lopez-Paz et al., 2022).
Humans have also different expectations from machines:
for example, while (Bai et al., 2022a) stressed aligning
LLMs towards helpful, honest, and harmless (Askell et al.,
2021) feedback, others’ interests are to make LLMs mostly
engaging and enjoyable (Irvine et al., 2023). Even hand-
engineered metrics can be in tension: generating shorter
descriptions with higher precision can increase the BLEU
(Papineni et al., 2002) score but decrease the ROUGE (Lin
& Hovy, 2003) score due to reduced recall.

Towards multi-policy strategies. Considering these chal-
lenges, it may not be feasible to develop a single model si-
multaneously aligned with everyone’s preferences (Ouyang
et al., 2022). Current strategies tend to align towards a
consensus-based user (Bakker et al., 2022; Ovadya, 2023),
inherently prioritizing certain values over others, potentially
resulting in unfair representations of marginalized groups
(Kirk et al., 2023). Moreover, these trade-offs (Pan et al.,
2023) are decided a priori before training, shifting the re-
sponsibility to the engineers and reducing transparency and
explainability (Hayes et al., 2022). These limitations, further
discussed in Appendix A.2.1, highlight a key limitation of
single-policy alignment strategies; their inability to handle
the diversity of human preferences. Yet, “human-aligned ar-
tificial intelligence is a multi-objective problem” (Vamplew
et al., 2018). Thus, we draw inspiration from the multi-
objective reinforcement learning (MORL) literature (Barrett
& Narayanan, 2008; Li et al., 2020; Tanaka & Yamamura,
2003; Van Moffaert & Nowé, 2014; Roijers et al., 2013;
Rădulescu et al., 2020) and notably (Hayes et al., 2022)
arguing that tackling diverse rewards requires shifting from
single-policy to multi-policy approaches. As optimality
depends on the relative preferences across those rewards,
the goal is not to learn a single network but rather a set of
Pareto-optimal networks (Pareto, 1964).

In this paper, we propose rewarded soup (RS), an efficient
and flexible multi-policy strategy to fine-tune any founda-
tion model. As shown in Section 1, we first use RL to
learn one network for each proxy reward; then, we com-
bine these expert networks according to user preferences.
This a posteriori selection allows for better-informed trade-
offs, improved transparency and increased fairness (Hayes
et al., 2022; Mannion et al., 2021). The method to combine
those networks is our main contribution: we do this through
linear interpolation in the weight space, despite the non-
linearities in the network. This is in line with recent findings
on linear mode connectivity (LMC) (Frankle et al., 2020;
Neyshabur et al., 2020): weights fine-tuned from a shared
pre-trained initialization remain linearly connected and thus
can be interpolated. This LMC inspired a plethora of weight
interpolation (WI) strategies (Wortsman et al., 2022a; Ramé
et al., 2022; Matena & Raffel, 2022; Ilharco et al., 2022;
Don-Yehiya et al., 2022; Ramé et al., 2023), discussed in
Section 4. Actually, the name rewarded soups follows the
terminology of model soups (Wortsman et al., 2022a), as we
combine various ingredients each rewarded differently. Un-
like previous works, which focused on supervised learning,
we explore LMC in RL, in a challenging setup where each
training run uses a different reward. Perhaps surprisingly,
we show that we can trade off the capabilities of multiple
weights in a single final model, thus without any computa-
tional overhead. This enables the creation of custom weights
for any preference over the diverse rewards.

• We propose a new practical strategy named rewarded
soup for fine-tuning foundation models with diverse
rewards. It defines a continuous set of (close to) Pareto-
optimal solutions by weight interpolation, approximat-
ing more costly multi-policy strategies.

• We analyze the linear mode connectivity between
weights fine-tuned on diverse rewards.

• We validate that RS mitigates reward misspecification.

In Section 3, we demonstrate the consistent effectiveness of
rewarded soup across a variety of tasks: RLHF fine-tuning
of LLaMA, multimodal tasks such as image captioning,
text-to-image generation with diffusion models or visual
grounding, as well as locomotion tasks. More results are on
our anonymized website.

2. Rewarded soups
2.1. RL fine-tuning with diverse rewards

We consider a deep neural network f of a fixed non-
linear architecture (e.g., with batch normalization (Ioffe
& Szegedy, 2015), ReLU layers (Agarap, 2018) or self-
attention (Vaswani et al., 2017)). It defines a policy by
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mapping inputs x to f(x, θ) when parametrized by θ. For
a reward R̂ and a test distribution T of deployment, our
goal is to maximize

∫
x∈T

R̂(f(x, θ)). Learning θ is now
commonly a three-step process: unsupervised pre-training,
supervised fine-tuning, and reward optimization. Yet R̂ is
usually not specified, meaning we can only optimize a proxy
reward R during training. This reward misspecification
between R and R̂ may hinder the alignment of the network
with R̂. Moreover, the diversity of human preferences
complicates the design of R.

Rather than optimizing one single proxy reward, our pa-
per’s first key idea is to consider a family of N diverse
proxy rewards {Ri}Ni=1. Each of these rewards evaluates
the prediction according to different (potentially conflicting)
criteria. The goal then becomes obtaining a coverage set of
policies that trade-off between these rewards. To this end,
we first introduce the costly MORL baseline. Its inefficiency
motivates our rewarded soups, which leverages our second
key idea: weight interpolation.

MORL baseline. The standard MORL scalarization strat-
egy (Barrett & Narayanan, 2008; Li et al., 2020) linearizes
the problem by interpolating the proxy rewards using M
different weightings. Specifically, during the training phase,
M trainings are launched, with the j-th optimizing the re-
ward

∑N
i=1 µ

j
iRi, where ∀j ∈ {1, ...,M}, {µj

i}Ni=1 ∈ ∆N

the N -simplex s.t.
∑N

i=1 µ
j
i = 1 and 0 ≤ µj

i ≤ 1. Then,
during the selection phase, the user’s reward R̂ becomes
known and the j-th policy that maximizes R̂ on some val-
idation dataset is selected. We typically expect to select j
such that

∑N
i=1 µ

j
iRi ≈ R̂ linearly approximates the user’s

reward. Finally, this j-th weight is used during the inference
phase on test samples. Yet, a critical issue is that “minor
[preference] variations may result in significant changes in
the solution” (Vamplew et al., 2008). Thus, a high level of
granularity in the mesh of ∆N is necessary. This requires
explicitly maintaining a large set of M ≫ N networks, prac-
tically one for each possible preference. Ultimately, this
MORL strategy is unscalable in deep learning due to the
computational, memory, and engineering costs involved
(see further discussion in Appendix A.2.2).

Rewarded soup (RS). In this paper, we draw inspiration
from the weight interpolation literature. The idea is to learn
expert weights and interpolate them linearly to combine
their abilities. Specifically, we propose RS, illustrated in
Section 1 and whose recipe is described below. RS alleviates
MORL’s scaling issue as it requires only M = N trainings
while being flexible and transparent.

1. During the training phase, we optimize a set of N
expert weights {θi}Ni=1, each corresponding to one of
the N proxy rewards {Ri}Ni=1, and all from a shared
pre-trained initialization.

2. For the selection phase, we linearly interpolate those
weights to define a continuous set of rewarded
soups policies: {∑N

i=1 λi · θi}{λi}N
i=1∈∆N

. Practi-
cally, we uniformly sample M interpolating coeffi-
cients {{λj

i}Ni=1}Mj=1 from the N -simplex ∆N and se-
lect the j-th that maximizes the user’s reward R̂ on
validation samples, i.e., argmaxMj=1 R̂

(∑N
i=1 λ

j
iθi

)
.

3. For the inference phase, we predict using the network
f parameterized by

∑N
i=1 λ

j
iθi.

While MORL interpolates the rewards, RS interpolates
the weights. This is a considerable advantage as the appro-
priate weighting λ, which depends on the desired trade-off,
can be selected a posteriori; the selection is achieved with-
out additional training, only via inference on some samples.
In the next Section 2.2 we explicitly state the Hypotheses 1
and 2 underlying in RS. These are considered Working Hy-
potheses as they enabled the development of our RS strategy.
Their empirical verification will be the main motivation for
our experiments on various tasks in Section 3.

2.2. Exploring the properties of the rewarded soups set
of solutions

2.2.1. LINEAR MODE CONNECTIVITY OF WEIGHTS
FINE-TUNED ON DIVERSE REWARDS

We consider {θi}Ni=1 fine-tuned on {Ri}Ni=1 from a shared
pre-trained initialization. Previous works (Frankle et al.,
2020; Neyshabur et al., 2020; Wortsman et al., 2022a; Ramé
et al., 2023) defined linear mode connectivity (LMC) w.r.t.
a single performance measure (e.g., accuracy or loss) in
supervised learning. We extend this notion in RL with N
rewards, and define that the LMC holds if all rewards for
the interpolated weights exceed the interpolated rewards.
It follows that the LMC condition which underpins RS’s
viability is the Hypothesis 1 below.
Working Hypothesis 1 (LMC). For all {λi}i ∈ ∆N and
k ∈ {1, ..., N}, Rk(

∑
i λi · θi) ≥

∑
i λiRk(θi).

2.2.2. PARETO OPTIMALITY OF REWARDED SOUPS

The Pareto front (PF) is the set of undominated weights,
for which no other weights can improve a reward without
sacrificing another, i.e., {θ | ∄θ′ ∈ Θ s.t. {Ri(θ

′)}Ni=1 >N

{Ri(θ)}Ni=1} where >N is the dominance relation in RN .
In practice, we only need to retain one policy for each possi-
ble value vector, i.e., a Pareto coverage set (PCS). We now
introduce the key Hypothesis 2.
Working Hypothesis 2 (Pareto optimality). The set
{∑i λi · θi|{λi}i ∈ ∆N} is a PCS of {Ri}i.

Hypothesis 2 holds if the rewarded soups solutions, un-
covered by interpolation, are Pareto-optimal. Overall, we
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empirically validate Hypotheses 1 and 2 in Section 3, yet
also report a few limitations in Appendix and research di-
rections to fix them. Moreover, we theoretically prove in
Appendix B.2 they approximately hold when rewards are
replaced by their second-order Taylor expansion with co-
diagonalizable Hessians, a simplified setup justifiable when
weights remain close.

Remark 1. Hypotheses 1 and 2 rely on a good pre-trained
initialization, making RS particularly well-suited to fine-
tune foundation models. This is because pre-training pre-
vents the weights from diverging during training (Neyshabur
et al., 2020). When the weights remain close, we can theo-
retically justify Hypotheses 1 and 2 (see Appendix B.2) and,
more broadly, demonstrate that WI approximates ensem-
bling (Hansen & Salamon, 1990; Lakshminarayanan et al.,
2017) (see Lemma 4). In contrast, the LMC does not hold
when training from scratch (Neyshabur et al., 2020).

Remark 2. Pareto-optimality in Hypothesis 2 is defined
w.r.t. a set of weights Θ. Yet, in full generality, improvements
in initialization, RL algorithms, data, or specific hyperpa-
rameters could enhance performances. In other words, for
real-world applications, the true PF is unknown and needs
to be defined w.r.t. a training procedure. In this case, Θ rep-
resents the set of weights attainable by fine-tuning within a
shared procedure. As such, in Section 3 we analyze Hypothe-
sis 2 by comparing the fronts obtained by RS and scalarized
MORL while keeping everything else constant.

2.2.3. CONSEQUENCES OF PARETO OPTIMALITY IF THE
USER’S REWARD IS LINEAR IN THE PROXY
REWARDS

Lemma 1 (Reduced reward misspecification in the linear
case). If Hypothesis 2 holds, and for linear reward R̂ =∑

i µ̂iRi with {µ̂i}i ∈ ∆N , then ∃{λi}i ∈ ∆N such that∑
i λi · θi is optimal for R̂.

The proof outlined in Appendix B.1 directly follows the
definition of Pareto optimality. In simpler terms, Lemma 1
implies that if Hypothesis 2 is true, then RS can mitigate
reward misspecification. For any preference µ̂, there exists a
λ such that the λ-interpolation over weights maximizes the
µ̂-interpolation over rewards. In practice, as we will see in
Figure 4(a), we can set λ = µ̂, or cross-validate λ on other
samples. Yet, this theoretically holds only for R̂ linear over
the proxy rewards. This follows the linear utility functions
setup from the MORL literature (Rădulescu et al., 2020),
whose limitations (Vamplew et al., 2008) are discussed in
Appendix A.1. This motivates having sufficiently rich and
diverse proxy rewards to capture the essential aspects of
all possible users’ rewards. Despite the lack of theoretical
guarantees, we will show in Figures 4(b) and 9 that weight
interpolation improves results even for non-linear R̂.

3. Experiments
In this section we implement RS across a variety of standard
learning tasks: text-to-text generation, image captioning,
image generation, visual grounding, and locomotion. We
use either model or statistical rewards. We follow a system-
atic procedure. First, we independently optimize diverse
rewards on training samples. For all tasks, we employ the
default architecture, hyperparameters and RL algorithm; the
only variation being the reward used across runs. Second,
we evaluate the rewards on the test samples: the results
are visually represented in series of plots. Third, we verify
Hypothesis 1 by examining whether RS’s rewards exceed
the interpolated rewards. Lastly, as the true Pareto front is
unknown in real-world applications, we present empirical
support for Hypothesis 2 by comparing the front defined by
RS (sliding λ between 0 and 1) to the MORL’s solutions op-
timizing the µ-weighted rewards for 0 ≤ µ ≤ 1 (sometimes
only µ = 0.5 for computational reasons).

3.1. Text-to-text: LLaMA with diverse RLHFs

Given the significance of RLHF to train LLMs, we begin
our experiments with text-to-text generation tasks. Our
pre-trained network is LLaMA-7b (Touvron et al., 2023),
instruction fine-tuned (Wei et al., 2022; Wang et al., 2022b)
on Alpaca (Taori et al., 2023). For RL training with PPO
(Schulman et al., 2017), we employ the trl package (von
Werra et al., 2020) and the setup from (Beeching et al.,
2023) with low-rank adapters (LoRA) (Hu et al., 2022a) for
efficiency. We consider the following tasks: summariza-
tion (Stiennon et al., 2020; Wu et al., 2021) on two datasets
(Reuter news (Ahmed, 2017) in Figure 2(a) and Reddit posts
(Völske et al., 2017) in Figure 2(b)), and helpfulness as a
conversational assistant (Bai et al., 2022a) in Figures 2(c)
and 2(d). To evaluate the generation in the absence of super-
vision, we utilized N = 2 different reward models (RMs)
for each task, except in Figure 2(d) where N = 4. These
RMs were trained on human preferences datasets (Chris-
tiano et al., 2017) and all open-sourced on HuggingFace
(Wolf et al., 2020). For example in summarization, R1

follows the “Summarize from Human Feedback” paper (Sti-
ennon et al., 2020), while R2 leverages “contrast candidate
generation” (Chen et al., 2021). For the assistant task, we
rely on diverse RMs from OpenAssistant (Köpf et al., 2023);
they differ by their training procedures.

The results are reported in Figure 2. The green front, de-
fined by RS between the two weights specialized on R1 and
R2, is above the straight line connecting those two points,
validating Hypothesis 1. Second, the front passes through
the point obtained by MORL fine-tuning on the average
of the two rewards, supporting Hypothesis 2. Moreover,
when comparing both full fronts, they have qualitatively
the same shape; quantitatively in hypervolume (Yen & He,
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Figure 2: RLHF results in NLP with LLaMA-7b (Touvron et al., 2023) and reward models Ri from HuggingFace (Wolf et al., 2020). The
blue line reports checkpoints’ results along the training trajectory of θ1 rewarding R1, the red line θ2 rewarding R2, and the purple line
the MORL rewarding R1+R2

2
. Our rewarded soup (RS) linearly interpolates between the weights θ1 and θ2; sliding the interpolation

coefficient λ from 0 to 1 reveals the green solid front of rewarded soups solutions. In Figures 2(a) and 2(b), we additionally show the
multiple MORL runs rewarding (1− µ)×R1 + µ×R2 with preferences 0 ≤ µ ≤ 1. It reveals a similar yellow front, yet more costly.
In Figure 2(d), we uniformly (λi =

1
4

) average the weights fine-tuned for the assistant task on N = 4 reward models.

2013) (lower is better, the area over the curve w.r.t. an opti-
mal point), RS’s hypervolume is 0.367 vs. 0.340 for MORL
in Figure 2(a), while it is 1.176 vs. 1.186 in Figure 2(b).
Finally, in Figure 2(d), we use N = 4 RMs for the assistant
task and uniformly average the N = 4 weights, confirming
that RS can scale and trade-off between more rewards.

3.2. Image-to-text: captioning with statistical rewards

RL training is also effective for multimodal tasks (Pinto
et al., 2023), for example in image captioning (Rennie et al.,
2017) where the task is to generate textual descriptions of
images. Precisely evaluating the quality of a prediction
w.r.t. a set of human-written captions is a challenging task,
thus the literature relies on various hand-engineered, non-
differentiable metrics: e.g., the precision-focused BLEU
(Papineni et al., 2002), the recall-focused ROUGE (Lin &
Hovy, 2003), METEOR (Banerjee & Lavie, 2005) handling
synonyms and CIDEr (Vedantam et al., 2015) using TF-IDF.
As these metrics are proxies for human preferences, good
trade-offs are desirable. We conduct our experiments on
COCO (Lin et al., 2014), with an ExpansionNetv2 (Hu et al.,
2022b) network and a Swin Transformer (Liu et al., 2022)
visual encoder, initialized from the state-of-the-art weights
of (Hu et al., 2022b) optimized on CIDEr. We then utilize
the code of (Hu et al., 2022b) and their self-critical (Rennie
et al., 2017) procedure (a variant of REINFORCE (Williams,
1992)) to reward the network on BLEU1, BLEU4, ROUGE
or METEOR. More details are in Appendix D.

We observe in Figure 3 that tuning solely BLEU1 sacri-
fices some points on ROUGE or BLEU4. Yet interpolating
between θ1 and θ2 uncovers a convex set of solutions ap-
proximating the ones obtained through scalarization of the
rewards in MORL. When comparing both full fronts in
Figure 3(a), they qualitatively have the same shape, and

quantitatively the same hypervolume (Yen & He, 2013) of
0.140. One of the strengths of RS is its ability to scale
to any number of rewards. In Figure 3(c), we uniformly
(λi =

1
5 ) average N = 5 weights fine-tuned independently.

It improves upon the initialization (Hu et al., 2022b) and
current state-of-the-art on all metrics, except for CIDEr, on
which (Hu et al., 2022b) was explicitly optimized.

Figure 4 refines our analysis of RS. In Figures 4(a) and 4(b),
rewards are normalized to 1 for the initialization and 0 for
the worst model. Figure 4(a) validates Lemma 1: for any
linear preference µ̂ over the proxy rewards, there exists an
optimal solution in the set described by RS. Two empirical
strategies to set the value of λ are close to optimal: select-
ing λ = µ̂ if µ̂ is known, or cross-validating (CV) λ if
a different data split (Karpathy & Fei-Fei, 2015) is avail-
able. Moreover, Figure 4(b) (and Figure 9 in Appendix D)
investigate all metrics as evaluation. Excluding results’ vari-
ance, we observe monotonicity in both training rewards,
linear in BLEU1 and quadratic in ROUGE. For other evalu-
ation rewards that cannot be linearly expressed over the
training rewards, the curves’ concavity shows that RS con-
sistently improves the endpoints, thereby mitigating reward
misspecification. The optimal λ depends on the similar-
ity between the evaluation and training rewards: e.g., best
BLEU2 are with small λ. Lastly, as per (Izmailov et al.,
2018) and Lemma 4, Figure 4(c) suggests that RS succeeds
because WI approximates deep ensembling (Hansen & Sala-
mon, 1990; Lakshminarayanan et al., 2017), interpolating
the predictions rather than the weights. Actually, ensem-
bling performs better, but it cannot be fairly compared as its
inference cost is doubled.
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Figure 3: Results in image captioning on COCO (Lin et al., 2014). As rewards R1 (blue stars every epoch) and R2 (red stars), we consider
standard statistical metrics: BLEU1 (1-gram overlap), BLEU4 (4-grams overlap), ROUGE, METEOR and CIDEr. Figure 3(a) include the
MORL training trajectories optimizing (1− µ)×BLEU1 + µ×ROUGE, uncovering a yellow front similar to RS’s green front. In
Figure 3(c), RS uniformly averages the 5 weights (one for each reward), resulting in the largest area and the best trade-off.
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Figure 4: Refined results in captioning with R1 = BLEU1 and R2 = ROUGE. Figure 4(a) empirically validates Lemma 1 by reporting
results of RS (for varying λ) and of MORL (for varying µ) for varying user’s preference µ̂. In Figure 4(b), all rewards are used for
evaluation as a function of the interpolating coefficient. In Figure 4(c), we report the front of the costly ensembling (Hansen & Salamon,
1990; Lakshminarayanan et al., 2017) of predictions (rather than of weights).

3.3. Text-to-image: diffusion models with RLHFs

Beyond text generation, we now apply RS to align text-
to-image generation with human feedbacks, as previously
done in recent papers(Lee et al., 2023; Wu et al., 2023b; Xu
et al., 2023). This alignment is expected to improve specific
visual control signals like colors, counts, and backgrounds.
Notably, diffusion models can be fine-tuned to match human
aesthetic preferences. Our network is a diffusion model (Ho
et al., 2020) with 2.2B parameters, pre-trained on an internal
dataset of 300M images; it reaches similar quality as Stable
Diffusion (Rombach et al., 2022), which was not used for
copyright reasons. As for any subjective metric, there is a
variety of reward models that can capture different aspects

of aesthetic preference. In our experiments, we employ
N = 2 open-source reward models: ava, trained on the
AVA dataset (Murray et al., 2012), and cafe, trained on
a mix of real-life and manga images. These two models
are trained in a supervised setting to match human quality
ratings collected. We first generate 10000 images; then, for
each reward, we remove half of the images with the lowest
reward’s score, and fine-tune 10% of the parameters (Xie
et al., 2023) on the reward-weighted negative log-likelihood
(Lee et al., 2023). More details are in Appendix E.
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Figure 5: Figure 5(a) reports our RLHF experiments on text-to-image generation with diffusion models. From the pre-trained initialization,
we learn θava and θcafe by optimizing the two reward models ava and cafe. Interpolation between them reveals the green Pareto-optimal
front, above the yellow MORL front. Figures 5(b) and 5(c) report our results in visual grounding (VG) on RefCOCO+ (Yu et al., 2016),
where we optimize to predict boxes with IoU> 0.5 w.r.t. the ground-truth, for objects of either small, medium or large size.

The results displayed in Figure 5(a) validate Hypothesis 1,
as the front described by RS when sliding λ from 0 and 1
is convex. Moreover, RS gives a better front than MORL,
validating Hypothesis 2. Interestingly, the ava reward model
seems to be more general-purpose than cafe, as RL training
on ava also enhances the scores of cafe. In contrast, the
model θcafe performs poorly in terms of ava in Figure 5(a).
Nonetheless, RS with (1−λ) · θava+λ · θcafe outperforms
θava alone, not only in terms of cafe, but also of ava when
λ ∈ {0.1, 0.2}. These findings confirm that RS can better
align text-to-image models with a variety of aesthetic pref-
erences. This ability to adapt at test time paves the way for
a new form of user interaction with text-to-image models,
beyond prompt engineering.

3.4. Text-to-box: visual grounding

We now consider visual grounding (VG) (Yu et al., 2016):
the task is to predict the bounding box of the region de-
scribed by an input text. We use a seq-to-seq unified model
predicting the box auto-regressively as a sequence of loca-
tion tokens (Wang et al., 2022a). This model is pre-trained
on a large image-text dataset, then fine-tuned with cross-
entropy for VG; finally, we use a weighted loss between
the cross-entropy and REINFORCE in the RL stage. As
the main evaluation metric for VG is the accuracy (i.e.,
intersection over union (IoU) > 0.5), we consider 3 non-
differentiable rewards: the accuracy on small, medium, and
large objects. We design this experimental setup because
improving results on all sizes simultaneously is challenging,
as shown in Figure 5(c), where MORL performs similarly
to the initialization. The results in Figure 5(b) confirm that
optimizing for small objects degrades performance on large
ones; fortunately, interpolating can trade-off. In conclusion,
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Figure 6: Locomotion results.

we can adapt to users’ preferences at test time by adjusting
λ, which in turn changes the object sizes that the model
effectively handles. On the one hand, if focusing on distant
and small objects, a large coefficient should be assigned to
θSmall. On the other hand, to perform well across all sizes,
we can recover initialization’s performances by averaging
uniformly (in Figure 5(c)). More details are in Appendix F.

3.5. Locomotion with diverse engineered rewards

Teaching humanoids to walk in a human-like manner (Duan
et al., 2016) serves as a benchmark to evaluate RL strategies
(Ng et al., 1999) for continuous control. One of the main
challenges is to shape a suitable proxy reward (Dorigo &
Colombetti, 1994; Dewey, 2014), given the intricate coordi-
nation and balance involved in human locomotion. It is stan-
dard (Todorov et al., 2012) to consider dense rewards of the
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form R = velocity − α×∑t a
2
t , controlling the agent’s

velocity while regularizing the actions {at}t taken over
time. Yet, the penalty coefficient α is challenging to set. To
address this, we devised two rewards in the Brax physics
engine (Freeman et al., 2021): a risky R1 with α = 0, and a
more cautious R2 with α = 1.

Like in all previous tasks, RS’s front in Figure 6 exceeds
the interpolated rewards, as per Hypothesis 1. Moreover,
RS’s front indicates an effective balance between risk-taking
and cautiousness, providing empirical support for Hypothe-
sis 2, although MORL with µ = 0.5 (i.e., α = 0.5) slightly
surpasses RS’s front. For a more qualitative and intuitive
assessment, we provide animations of our RL agent’s lo-
comotion on our anonymized website. More details are
available in Appendix G.

4. Related work
Our RS approach leans on two key components from tra-
ditional DRL. The first is proxy rewards, whose design is
challenging. Statistical metrics, the standard in captioning
(Rennie et al., 2017) or language translation (Ranzato et al.,
2016), are not practical to measure human concepts (Kwon
et al., 2023) such as helpfulness (Bai et al., 2022a; Askell
et al., 2021). Reward models can be trained via inverse DRL
(Ng et al., 2000; Abbeel & Ng, 2004) when supervision
from experts is available, otherwise from prediction compar-
ison in recent RLHF works(Stiennon et al., 2020; Ouyang
et al., 2022; Christiano et al., 2017). The latest (Kwon et al.,
2023; Bai et al., 2022b; Madaan et al., 2023; Scheurer et al.,
2023; Sun et al., 2023) further reduce the labeling costs by
using the in-context abilities of LLMs.

Second, RS relies on existing RL algorithms to maximize
the given rewards. RS succeeds with variants of two of the
most common, REINFORCE (Williams, 1992) and PPO
(Schulman et al., 2017), suggesting it could be applied to
others (Go et al., 2023; Yuan et al., 2023). Among the
ensembling-like RL strategies (Wang et al., 2010; Mordatch
et al., 2015; Rajeswaran et al., 2017) handling multiple poli-
cies, some (Parker-Holder et al., 2020; Osa et al., 2022) aim
to explicitly increase the diversity, yet never with foundation
models nor weight interpolation. Moreover, pre-training
could address stability and exploration issues (Xie et al.,
2022; Yang et al., 2023; Sekar et al., 2020).

When dealing with multiple objectives in deep learning, the
common approach is to combine them into a single reward
(Roijers et al., 2013; Rădulescu et al., 2020): (Glaese et al.,
2022) multiply the predictions of a preference RM (evaluat-
ing factfullness) and a rule RM (detecting rules breaking).
The multi-policy alternatives (Barrett & Narayanan, 2008;
Li et al., 2020; Tanaka & Yamamura, 2003; Van Moffaert
& Nowé, 2014) are usually more costly. To reduce the

cost, (Won et al., 2020; Yang et al., 2020) build experts
and then train a new network to combine them; (Mossalam
et al., 2016; Wilson et al., 2007; Nguyen et al., 2020) share
weights across experts; (Castelletti et al., 2013; Yang et al.,
2019; Abels et al., 2019; Peschl et al., 2021) directly train a
single model; the recent and more similar (Hua et al., 2023)
learns one linear embedding per (locomotion) task that can
be interpolated. Yet, these works are mostly for academic
benchmarks (Todorov et al., 2012; Vamplew et al., 2011);
adapting them to larger tasks (e.g., RLHF for foundation
models with PPO) is challenging as they modify the training
procedure. Finally, we relate to multitask learning (Caru-
ana, 1997), where predictions are evaluated for multiple
tasks; in contrast, we have a single prediction evaluated by
multiple rewards.

Recent works extended the linear mode connectivity when
fine-tuning on different tasks (Ilharco et al., 2022; Don-
Yehiya et al., 2022; Ramé et al., 2023; Wu et al., 2023a)
or with different losses (Ramé et al., 2022; Croce et al.,
2023), while (Juneja et al., 2023) highlighted some fail-
ures in NLP for classification. In contrast, we investigate
the LMC in RL. The most similar works are for control
system tasks: (Lawson & Qureshi, 2023) averaging de-
cision transformers and (Gaya et al., 2022) explicitly en-
forcing connectivity in subspaces of policies trained from
scratch on a single reward. When the LMC holds, combin-
ing networks in weights combines their abilities (Ilharco
et al., 2023; Daheim et al., 2023); e.g., averaging an En-
glish summarizer and an English-to-French translator can
summarize in French (Jang et al., 2023). In domain general-
ization, (Wortsman et al., 2022a; Ramé et al., 2022; Arpit
et al., 2021) showed that WI reduces model misspecifica-
tion (D’Amour et al., 2020); by analogy, we show that RS
reduces reward misspecification.

5. Conclusion
As AI systems are increasingly applied to crucial real-world
tasks, there is a pressing issue to align them to our specific
and diverse needs, while making the process more transpar-
ent and limiting the cultural hegemony of a few individuals.
In this paper, we proposed rewarded soup, a strategy that
efficiently yields Pareto-optimal solutions through weight
interpolation after training. Our experiments have consis-
tently validated our working hypotheses for various signifi-
cant large-scale learning tasks, demonstrating that rewarded
soup can mitigate reward misspecification. We hope to in-
spire further research in exploring how the generalization
literature in deep learning can help for alignment, to create
AIs that benefit society as a whole.
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Rewarded soups: towards Pareto-optimality by interpolating weights fine-tuned on
diverse rewards

Supplementary material

This supplementary material is organized as follows:

• Appendix A further discusses the societal impacts of our RS strategy.

• Appendix B details some theoretical aspects of our RS strategy.

• Appendix C details our experiments in RLHF with LLaMA for text-to-text generation.

• Appendix D details and enriches our experiments in image captioning.

• Appendix E details and enriches our experiments in image generation.

• Appendix F details and enriches our experiments in visual grounding.

• Appendix G details and enriches our locomotion experiments.

The shareable code will be released on this anonymized url page. Moreover, you can find additional qualitative results of our
experiments on our anonymized website.

A. Discussion
A.1. Limitations and societal impacts

The recent and rapid scaling of networks presents both opportunities and major concerns (Amodei et al., 2016; Hendrycks
& Mazeika, 2022; Hendrycks, 2023). Our approach is a step towards better empirical alignment (Taylor et al., 2016;
Ngo, 2022). Yet, reward misspecification is only one of the many challenges inherited from the RL paradigm. First, proxy
rewards may lack robustness (Gao et al., 2022) or be hacked (Skalse et al., 2022) via adversarial exploitation, making
them unreliable. Second, RL algorithms may cause overfitting, leading to poor generalization in test, with a risk of goal
misgeneralization (Shah et al., 2022; Di Langosco et al., 2022). Third, RLHF has drawbacks, such as harming calibration
(OpenAI, 2023). Our a posteriori multi-policy strategy could alleviate the impact of some badly shaped proxy rewards and
some failed optimizations, as well as tackling Goodhart’s law (Smith, 2021). Yet, without constraint on the test distribution,
complete alignment may be impossible (Wolf et al., 2023), for example for LLMs with prompts of arbitrary (long) length.
Therefore, new training paradigms (Keskar et al., 2019; Korbak et al., 2023) beyond RL may be required.

Theoretical guarantees for alignment are also needed (Rodriguez-Soto et al., 2021). Yet, RS relies on an empirical
finding: the LMC (Frankle et al., 2020), which currently lacks full theoretical guarantees, even in the simplest case of
moving averages (Izmailov et al., 2018). The best existing explanation (Ramé et al., 2022; Izmailov et al., 2018) relies on
the similarities between weight interpolation and functional ensembling (Hansen & Salamon, 1990; Lakshminarayanan
et al., 2017) when weights remain close, as recalled in Lemma 4. Moreover, assuming the LMC, Lemma 1 theoretically
fixes issues only for R̂ linear over the proxy rewards. Yet, such linearization cannot encapsulate all types of (human)
preferences (Vamplew et al., 2018; 2008). Thus, considering more complex combinations (Gábor et al., 1998; An et al.,
2021; Van Moffaert et al., 2013; Smith et al., 2021) is a promising direction. We may empirically overcome this limitation
within RS by continually adjusting and adding new proxy rewards, such that their linear mixtures have increasingly good
coverage. Indeed, RS is flexible and was shown to handle variable numbers of rewards.

Finally, our a posteriori alignment with users facilitates personalization (Salemi et al., 2023) of models. As discussed
in Appendix A.2.1 and in (Kirk et al., 2023), this could increase usefulness by providing tailored generation, notably to
under-represented groups. Moreover, the distributed nature of RS makes it parallelizable thus practical in a federated
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learning setup (McMahan et al., 2017) where data must remain private. Yet, this personalization comes with risks for
individuals of “reinforcing their biases [...] and narrowing their information diet”(Kirk et al., 2023). This may worsen the
polarization of the public sphere. Under these concerns, we concur with the notion of “personalization within bounds” (Kirk
et al., 2023), with these boundaries potentially set by weights fine-tuned on diverse and carefully inspected rewards.

A.2. Benefits of our approach

In this section we discuss the benefits of our rewarded soup (RS) approach with respect to the two families of strategies: the
single-policy and the multi-policy approaches.

A.2.1. COMPARED TO SINGLE-POLICY APPROACHES

The main reason why single-policy approaches are not suitable is because they optimize over a single set of preferences.
In contrast, we build a coverage set of Pareto-optimal policies. This is important for the following reasons, mostly first
discussed in Hayes et al. (Hayes et al., 2022) and in Kirk et al. (Kirk et al., 2023).

Indeed, the user’s true reward is highly uncertain before training. This “semi-blind” (Hayes et al., 2022) manual process
forces a priori and uncertain decisions about the required trade-offs. It shifts the responsibility from the problem
stakeholders to the system engineers, who need to anticipate the impact of their choices on the final performance. Critically,
the RLHF process may cause the “tyranny of the crowdworker” (Kirk et al., 2023), as models are “tailored to meet the
expectations of [...] a small number of crowdworkers primarily based in the US, with little to no representation of broader
human cultures, geographies or languages.” (Kirk et al., 2023). Moreover, these “biases are exacerbated by a lack of [...]
documentation” (Kirk et al., 2023). Thus (Kirk et al., 2023) argue that the personalization should be explicit—rather than
implicitly caused by hidden and chaotic engineering choices. In contrast, our strategy could support decision-making to
find a good balance between (potentially conflicting) parties’ interests. This value pluralism (Tetlock, 1986) can lead to
fairer and more equitable outcomes (Vamplew et al., 2018; Siddique et al., 2020). Single-policy cannot adapt to test time
requirements; in contrast, RS facilitates personalized assistances (Salemi et al., 2023), with fewer prompts/inputs to the
model, as we only need to adapt interpolating coefficients and not the full network. This is all the more important as human
preferences change from time to time: in this dynamic utility function scenario, RS can quickly adapt by adjusting the λ to
match new preferences. Finally, RS could also improve the interpretability and explainability of the decisions. Letting the
users decide could make the process more transparent (Gabriel & Ghazavi, 2021), which is essential to ensure that the
development process is fair, unbiased, and inclusive (Abadi et al., 2016).

A.2.2. COMPARED TO MULTI-POLICY APPROACHES

The main reason why other multi-policy approaches through multitasking are not suitable is because of their computational
costs required to learn a dense set of policies. In contrast, RS only trains the proxy rewards independently, and enables
the selection of the interpolating coefficient a posteriori. This is especially useful with large number of rewards and thus
growing number of combinations. Second, multitask (Caruana, 1997) is challenging; for example, even if the true reward is
actually a linear weighted sum of some proxy rewards and those coefficients are known, using those preferences during
training can lead to suboptimal results (Van Moffaert et al., 2014), because of conflicting gradients (Yu et al., 2020; Liu
et al., 2021) or different variance scales (Espeholt et al., 2018; Teh et al., 2017). This has been tackled in RL, but so far
mostly for games such as ATARI (Bellemare et al., 2013). Third, our strategy is compatible with the inherent iterative
engineering process of alignment. Indeed, RS can continually include adjusted opinions while preventing forgetting of the
old behaviours. This relates to the continual learning challenge, and the empirical observations that weight averaging can
reduce catastrophic forgetting (Stojanovski et al., 2022; Eeckt et al., 2022). Moreover, as shown in (Ilharco et al., 2023)
and confirmed in Figure 10(c), negative editing by weight interpolation can fix and force the removal of some behaviours.
Finally, RS is computationally effective, requiring no communication across servers, thus enabling “embarrassingly simple
parallelization” (Li et al., 2022). This facilitates its use in federated learning scenario (McMahan et al., 2017) where the
data should remain private. Actually, RS follows the updatable machine learning paradigm (Raffel, 2021), “allowing
for the collaborative creation of increasingly sophisticated AI system” (Ramé et al., 2023). In the future, we may develop
open-source personalized models, rewarded on decentralized private datasets, and combine them continuously.
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B. Theoretical insights
B.1. Proof of Lemma 1

Proof. Considering θ maximizing R̂, we first show that θ is on the PF of {Ri}i. Otherwise, considering θ′ >N θ
and as ∀i, µ̂i ≥ 0, we have

∑
i µ̂iRi(θ

′) >
∑

i µ̂iRi(θ). This implies that θ′ would produce a better policy than θ

for R̂ =
∑

i µ̂iRi and thus the contradiction. Finally, as θ is on the PF and by definition of a PCS, there exists λ s.t.
∀k,Rk(

∑
i λi · θi) = Rk(θ).

B.2. Theoretical guarantees with quadratic rewards

In this section, we provide theoretical guarantees for the near-optimality of RS when considering quadratic rewards. This
simplification amounts to replacing the rewards by their second-order Taylor approximation, which is a realistic assumption
when the weights remain within a small neighborhood.

B.2.1. SIMPLE CASE WITH HESSIANS PROPORTIONAL TO THE IDENTITY MATRIX

For the first Lemma 2, we make the following simplifying Assumption 1.

Assumption 1 (Hessians proportional to the Identity matrix.). Every reward Ri is quadratic, with Hessians proportional
to Id. Specifically, let Θ ⊂ Rd be the set of possible weights, and let {Ri}Ni=1 be the N rewards, we can write for
i ∈ {1, ..., N}:

∀θ ∈ Θ, Ri(θ) = Ri(θi)− ηi∥θ − θi∥2 (1)

where ηi ∈ R∗
+ and θi is the global maximum for reward Ri.

Lemma 2. Let µ̂ = (µ̂1, ..., µ̂N ) ∈ ∆N . Then, under Assumption 1, the reward Rµ̂ =
∑

i µ̂i × Ri is maximized on the
convex hull of {θ1, ..., θN}.

Proof. The function Rµ̂ is quadratic thus has an unique global maximum θ̂, that we find analytically:

∇θRµ̂(θ̂) = 0 =⇒
N∑

i=1

µiηi · (θ̂ − θi) = 0

=⇒ θ̂ =

∑N
i=1 µ̂iηi · θi∑N

i=1 µ̂iηi

Since all the µ̂iηi are positive or zero, and at least one is greater than zero, θ̂ is indeed in the convex hull of {θ1, ..., θN}.

Remark 3. Under Assumption 1, the reward functions are concave; thus we can reasonably assume that each fine-tuning
procedure for Ri reaches its global optimum θi for i ∈ {1, ..., N}. Then, Lemma 2 tells us that the maximum value for
linear user’s reward Rµ̂ is obtainable by weight interpolation between the {θi}Ni=1: the interpolating coefficients in ∆N

such that λi ∝ µ̂iηi make rewarded soups optimal.

B.2.2. ADVANCED CASE WITH DIAGONAL HESSIANS

We now consider the more complex case with the relaxed Assumption 2. For simplicity, we only consider N = 2 rewards
R1 and R2.

Assumption 2 (Diagonal Hessians). The rewards are quadratic, with Hessians diagonal negative definite. Specifically, we
can write for i ∈ {1, 2}:

∀θ = (θ1, ..., θd) ∈ Θ, Ri(θ) = Ri(θi)−
d∑

j=1

ηji (θ
j − θji )

2, (2)

where (η1i , ...ηdi ) ∈ {R∗
+}d and θi = (θ1i , ..., θdi ) is the global maximum for reward Ri.
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Remark 4. This diagonal Assumption 2 of the Hessian is common: for example in optimization (LeCun et al., 2012; Kingma
& Ba, 2015), to prune networks (LeCun et al., 1990) or in out-of-distribution generalization (Rame et al., 2022). This strong
assumption is supported by the empirical observation (Becker & Le Cun, 1988) that Hessians are diagonally dominant,
in particular at the end of training. Also, we note that our findings remain valid assuming only that the Hessians are
co-diagonalizable.

Lemma 3. We consider the user’s reward Rµ̂ = (1− µ̂)×R1 + µ̂×R2 with µ̂ ∈ [0, 1], and

∆Rµ̂ = max
θ∈Θ

Rµ̂(θ)− max
λ∈[0,1]

Rµ̂((1− λ) · θ1 + λ · θ2). (3)

∆Rµ̂ corresponds to the difference in terms of Rµ̂ between the global maximum and the maximum reachable by weight
interpolation through rewarded soups (with a single interpolating coefficient for all dimensions). Then, under Assumption 2,
we have:

∆Rµ̂ ≤ µ̂2(1− µ̂)2(M∆1 −∆2)(M∆2 −∆1)

(µ̂(1− µ̂)(M − 1)2 +M)((1− µ̂)∆1 + µ̂∆2)
, (4)

where M = maxj∈{1,...,d} max
(

ηj
1

ηj
2

,
ηj
2

ηj
1

)
is the maximum of eigenvalues ratio, ∆1 = R1(θ1) − R1(θ2) and ∆2 =

R2(θ2)−R2(θ1).

When ∆1 = ∆2, the bound simplifies into:

∆Rµ̂ ≤ µ̂2(1− µ̂)2(M − 1)2

µ̂(1− µ̂)(M − 1)2 +M
∆1 (5)

Furthermore, when the Hessians are equal, then M = 1 and ∆Rµ̂ = 0: RS is optimal .

Proof. This novel proof is in three steps. First, we find θ̂ maximizing Rµ̂(θ) for θ on the full set of weights Θ. Second,
we find λ̄ maximizing Rµ̂((1− λ) · θ1 + λ · θ2) for λ ∈ [0, 1] and thus defining the best interpolation between the expert
weights. Finally, we bound ∆Rµ̂, the differences between their rewards, by applying the Bhatia-Davis inequality.

First step. Let’s first find the maximum of Rµ̂ on Θ. Denoting S = (1 − µ̂) × R1(θ1) + µ̂ × R2(θ2), we have for all
θ ∈ Θ:

Rµ̂(θ) = S −
d∑

j=1

(
(1− µ̂)ηj1

(
θj − θj1

)2
+ µ̂ηj2

(
θj − θj2

)2)
(6)

Since Rµ̂ is a sum of concave quadratic functions, it has a unique global maximum reached at a point we note θ̂ =(
θ̂1, ..., θ̂d

)
. The global maximum can be computed by differentiating Rµ̂ with respect to each variable θj , which gives:

θ̂j =
(
1− λ̂j

)
· θj1 + λ̂j · θj2

where the interpolating coefficients per dimension λ̂j are defined for j ∈ {1, ..., d} as:

λ̂j =
µ̂ηj2

(1− µ̂)ηj1 + µ̂ηj2
∈ [0, 1]. (7)

Second step. With λ ∈ [0, 1] and θ = (1− λ) · θ1 + λ · θ2, we can write Rµ̂(θ) as a function of λ:

Rµ̂(θ) = S −
d∑

j=1

((
(1− µ̂)ηj1 + µ̂ηj2

)(
λ− λ̂j

)2
+

µ̂(1− µ̂)ηj1η
j
2

(1− µ̂)ηj1 + µ̂ηj2

)(
θj1 − θj2

)2

= Rµ̂(θ̂)−
d∑

j=1

pj

(
λ− λ̂j

)2
(8)
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where pj is defined as pj =
(
(1− µ̂)ηj1 + µ̂ηj2

)(
θj1 − θj2

)2
.

From Equation (8), we can compute the maximum reward obtainable for weight averaging maxλ∈[0,1] Rµ̂((1 −
λ)·θ1 + λ · θ2). Since the function λ 7→ Rµ̂((1− λ) · θ1 + λ · θ2) is a concave quadratic function, there is a unique
value λ̄ maximizing Rµ̂ equal to

λ̄ =

∑d
j=1 pj λ̂

j

∑d
j=1 pj

. (9)

Since all pj are positive and all λ̂j are between 0 and 1, λ̄ is also between 0 and 1. Therefore, Rµ̂

(
(1− λ̄) · θ1 + λ̄ · θ2

)
is

indeed the maximum reward for rewarded soups.

Third step. Applying Equation (8) to λ̄ gives:

∆Rµ̂ = Rµ̂(θ̂)−Rµ̂

(
(1− λ̄) · θ1 + λ̄ · θ2

)
(10)

=

d∑

j=1

pj

(
λ̄− λ̂j

)2
(11)

=




d∑

j=1

pj∑n
i=1 pi

(
λ̄− λ̂j

)2





n∑

j=1

pj


 (12)

The second term in Equation (12) can be simplified as:

d∑

j=1

pj = (1− µ̂)∆1 + µ̂∆2. (13)

The core component of this proof is the upper bounding of the first term in Equation (12). The key idea is to recognize the
variance of a discrete random variable Λ with P(Λ = λ̂i) =

pi∑n
j=1 pj

; then, λ̄ from Equation (9) is actually the expectation
of Λ. Then, we can apply the Bhatia-Davis inequality, as recalled in Equation (14), on the variance of a bounded random
variable a ≤ Λ ≤ b:

V ar(Λ) ≤ (b− E(Λ))(E(Λ)− a) (14)

Therefore Equation (12) is bounded by:

∆Rµ̂ ≤
(

max
1≤j≤d

λ̂j − λ̄

)(
λ̄− min

1≤j≤d
λ̂j

)
((1− µ̂)∆1 + µ̂∆2). (15)

Now, we bound the variables λ̂j , since 1/M ≤ ηj1/η
j
2 ≤ M . Then for all j we have:

µ̂

(1− µ̂)M + µ̂
≤ λ̂j ≤ µ̂M

(1− µ̂) + µ̂M
, (16)

and thus:

∆Rµ̂ ≤
(

µ̂M

1 + µ̂(M − 1)
− λ̄

)(
λ̄− µ̂

M − µ̂(M − 1)

)
((1− µ̂)∆1 + µ̂∆2). (17)

Finally, noting that ∆i =
∑d

j=1 η
j
i

(
θj2 − θj1

)2
, we deduce from Equation (9) that λ̄ = µ̂∆2

(1−µ̂)∆1+µ̂∆2
. Replacing this in the

previous Equation (17) gives the final Equation (4), concluding the proof.
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Remark 5. As a final remark, please note that the suboptimality of RS comes from the need of having one single interpolating
coefficient λ̄ for all d parameters (θ1, ..., θd) of the network. Yet, the advanced merging operations in (Matena & Raffel,
2022) remove this constraint, with interpolating coefficients proportional to the eigenvalues of the Fisher matrices (Fisher,
1922), which actually approximate the eigenvalues of the Hessian (Schraudolph, 2002; Thomas et al., 2020). Combining
(Matena & Raffel, 2022) and our RS is a promising research direction, the key issue being the computation of the Fisher
matrices (Kunstner et al., 2019) for networks with billions of parameters.

B.2.3. BOUND VISUALIZATION

We visualize in Figure 7 the bound given by Lemma 3. We show that for small values of M like M = 2, the value of Rµ̂ for
RS is quite close to the global optimum. Also, recall that RS theoretically matches this upper bound when M = 1. For
larger values like M = 10, the bound is less tight, and we note that the maximum value of Rµ̂ approaches the constant
function 1 as M → ∞.
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Rewarded soups

LMC lower bound

Figure 7: Illustration of the bound given by Lemma 3 under Assumption 2. For simplicity, we showcase the case where R1(θ1) =
R2(θ2) = 1, R1(θ2) = R2(θ1) = 0, thus ∆1 = ∆2 = 1. In green, we plot the rewards obtained with rewarded soups for the optimal
λ̄, i.e., Rµ̂

(
(1− λ̄) · θ1 + λ̄ · θ2

)
, whose value is independent of M in this case. In blues, we plot the maximum value of Rµ̂ given by

Equation (5) in Lemma 3, for M = 2 and M = 10. For reference, we also plot the values for the lower bound in the LMC Hypothesis 1,
i.e., equal to (1− µ̂)(1− λ̄)R1(θ1) + µ̂λ̄R2(θ2). As RS outperforms this lower bound, it validates Hypothesis 1 in this case.
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B.3. Similarity between weight interpolation and functional ensembling

Lemma 4 (λ-interpolation of weights approximates the λ-ensembling of predictions. Adapted from (Wortsman et al.,
2022a; Ramé et al., 2022; Izmailov et al., 2018).). Given θ1 and θ2 optimized for R1 and R2 s.t. they remain close, i.e.,
∥θ1 − θ2∥2 ≈ 0. Denoting θλ the interpolated weights θλ = (1− λ) · θ1 + λ · θ2 and fλ the ensembling of predictions
fλ(·) = (1− λ) · f(·, θ1) + λ · f(·, θ2):

f(·, θλ) ≈ fλ(·)
and for k ∈ {1, 2}:

Rk(f(·, θλ)) ≈ Rk(fλ(·))

Proof. This proof follows (Ramé et al., 2022) and has two components.

Functional approximation. First, we perform a Taylor expansion at the first order of the models’ predictions w.r.t.
parameters θ for x ∈ T :

f(x, θ1) = f(x, θλ) +∇θf(x, θλ)
⊺(θ1 − θλ) +O

(
∥θ1 − θλ∥22

)

= f(x, θλ) +∇θf(x, θλ)
⊺(λ · θ1 − λ · θ2) +O

(
∥θ1 − θ2∥22

)

and similarly:

f(x, θ2) = f(x, θλ) +∇θf(x, θλ)
⊺((λ− 1) · θ1 + (1− λ) · θ2) +O

(
∥θ1 − θ2∥22

)

Then by λ-weighted sum over i, the term multiplying ∇θf(x, θλ)
⊺ cancels out and we obtain:

fλ(x) = (1− λ) · f(x, θ1) + λ · f(x, θ2) = f(x, θλ) +O
(
∥θ1 − θ2∥22

)
. (18)

Reward approximation. Second, we obtain the reward approximation with a Taylor expansion at the zeroth order of the
reward Rk for k ∈ {1, 2} and injecting Equation (18):

Rk(fλ(x)) = Rk(f(x, θλ)(x)) +O(∥fλ(x)− f(x, θλ)∥2)
= Rk(f(x, θλ)(x)) +O

(
∥θ1 − θ2∥22

)
.

We obtain the results when θ1 and θ2 remain close, i.e., when we can ignore the O term.

C. Text-to-text: LLaMA with diverse RLHFs
We summarize the key implementation details of our text-to-text generation experiments in Table 1. The pre-trained network
is LLaMA-7b (Touvron et al., 2023); then low-rank adapters (Hu et al., 2022a) were fine-tuned on Alpaca (Taori et al.,
2023) to follow instructions. We eventually fine-tune via PPO on the different considered tasks. Our code is adapted
from (Beeching et al., 2023); we kept most of their hyperparameter values, only dividing by 2 the batch size to fit in our
GPU and extending the output length. For each considered task, we downloaded the reward models from HuggingFace
(Wolf et al., 2020). For example in summarization tasks, R1 was open-sourced in an effort to reproduce the Summarize
from Human Feedback paper (Stiennon et al., 2020), while R2 (Chen et al., 2021) aimed at improved “faithfulness in
abstractive summarization with contrast candidate generation”. For the assistant task, we rely on different reward models
from OpenAssistant (Köpf et al., 2023). Though they all aim at evaluating whether an answer is adequate given a question,
they differ in their predictions due to differences in their architecture and training procedures. In practice, we simply leverage
them as block-box classification pipelines, implemented in the transformers library (Wolf et al., 2020).
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Table 1: LLaMA with RLHF experiments: key implementation details.

Model
Architecture Transformer (Vaswani et al., 2017)
Pre-training LLaMA-7b (Touvron et al., 2023)

Instruction FT Alpaca (Taori et al., 2023)

RL procedure
Fine-tuning strategy LoRA (Hu et al., 2022a)

following Alpaca-LoRA (Wang, 2023)
LoRA alpha 16

LoRA dropout 0.05
following trl-peft (von Werra et al., 2020; Beeching et al., 2023)

Optimizer Adam (Kingma & Ba, 2015)
Learning rate 1.41e-5

Batch size 128
Output length Between 16 and 32
RL algorithm PPO (Schulman et al., 2017)

KL PPO 0.05 for summary tasks else 0.2
Epochs 2 for Reuter summary else 1

Hardware NVIDIA RTX A6000 49 Go
Compute budget 4000 GPUh

Task name Reuter summary
Description Generate a concise and clear summary of newspaper articles from Reuters.

Prompt “Generate a one-sentence summary of this post.”
Dataset Reuter news from (Ahmed, 2017; Ahmed et al., 2018) from news-summary
R1 gpt2-reward-summarization trained here.
R2 bart-faithful-summary-detector (Chen et al., 2021)

Figure Figure 2(a)

Task name Reddit summary
Description Generate a concise and clear summary of posts from Reddit across a variety of topics (subreddits).

Prompt “Generate a one-sentence summary of this post.”
Dataset Reddit crawl from the TL;DR dataset (Völske et al., 2017) from summarize-from-feedback (Stiennon et al., 2020)
R1 gpt2-reward-summarization trained here.
R2 bart-faithful-summary-detector (Chen et al., 2021)

Figure Figure 2(b)

Task name Helpful assistant
Description Provide helpful and harmless answers to potentially complex and sensitive questions.

Prompt No prompt, only users’ questions.
Dataset Helpfulness and Harmlessness datasets (Bai et al., 2022a) from hh-rlhf
R1 reward-model-deberta-v3-large-v2
R2 reward-model-electra-large-discriminator
R3 reward-model-deberta-v3-base-v2
R4 reward-model-deberta-v3-base

Figure Figures 2(c) and 2(d)
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D. Image-to-text: captioning with diverse rewards
D.1. Experimental details

We summarize the key implementation details of our captioning experiments in Table 2. In short, we took the state-of-the-art
network (Hu et al., 2022b) for captioning on COCO, fine-tune with their code and only changing the reward. In more details,
since the self-critical paper (Rennie et al., 2017) (a variant of REINFORCE (Williams, 1992) with a specific estimation of
the baseline score) it is now common in captioning to optimize the CIDEr reward (Vedantam et al., 2015) after a first step of
supervised fine-training. The recent ExpansionNetv2 (Hu et al., 2022b) follows this strategy to reach state-of-the-art results,
with a Swin Transformer (Liu et al., 2022) visual encoder and a block static expansion for efficiency. We investigate whether
additional RL trainings can help. We use their code and most of their hyperparameters, only reducing the batch size from 24
to 18 to fit in our GPUs and consequently adapt the learning rate.

Table 2: Captioning experiments: key implementation details.

Model
Architecture ExpansionNetv2 (Hu et al., 2022b)

Visual encoder Swin Transformer (Liu et al., 2022)
Visual encoder pre-training ImageNet 22k (Deng et al., 2009)

Fine-tuning Cross-entropy then CIDEr RL (Rennie et al., 2017) on COCO (Lin et al., 2014)

RL procedure
Fine-tuning strategy Usually frozen visual backbone, but end-to-end in Figure 10(d)

RL algorithm self-critical (Rennie et al., 2017), a variant of REINFORCE (Williams, 1992)
Optimizer Radam (Liu et al., 2020)

Dataset COCO (Lin et al., 2014) and Karpathy split (Karpathy & Fei-Fei, 2015)
Rewards BLEU (with 1-gram or 4-grams), ROUGE, METEOR, CIDEr

Learning rate 1e-5
Batch size 18

Gradient accumulation 2
Warmup Anneal 0.8 during 1 epoch
Epochs 6

Hardware GPU V100 32G
Compute budget 1500 GPUh

D.2. Additional results
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Figure 8: Additional results in captioning with more rewards, complementing Figure 3. Specifically, Figure 8(a) uses R1 = BLEU4 and
R2 = ROUGE; then, with R1 = BLEU1, Figure 8(b) uses R2 = METEOR and Figure 8(c) uses R2 = CIDEr. In particular, the
latter shows the failure when optimizing CIDEr; indeed, let’s recall that the pre-trained initialization (Hu et al., 2022b) has actually already
been trained by optimizing CIDEr (Rennie et al., 2017). Thus optimizing CIDEr a second time does not help, nor in CIDEr neither in
other rewards. That’s why in Figure 3(c) we consider the initialization as the network parametrization optimized for CIDEr.

25



0.0 0.2 0.4 0.6 0.8 1.0

λ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
or

m
al

iz
ed

re
w

ar
d

s

RS: (1− λ) · θBLEU1+λ · θBLEU4

R1: BLEU1

BLEU2

BLEU3
R2: BLEU4

ROUGE

METEOR

CIDEr

(a) R2 = BLEU4.

0.0 0.2 0.4 0.6 0.8 1.0

λ

0.0

0.5

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

re
w

ar
d

s

RS: (1− λ) · θBLEU1+λ · θMETEOR

R1: BLEU1

BLEU2

BLEU3

BLEU4

ROUGE
R2: METEOR

CIDEr

(b) R2 = METEOR.

0.0 0.2 0.4 0.6 0.8 1.0

λ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
or

m
al

iz
ed

re
w

ar
d

s

RS: (1− λ) · θBLEU1+λ · θCIDEr
R1: BLEU1

BLEU2

BLEU3

BLEU4

ROUGE

METEOR
R2: CIDEr

(c) R2 = CIDEr.

0.0 0.2 0.4 0.6 0.8 1.0

µ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
or

m
al

iz
ed

re
w

ar
d

s

MORL: (1− µ)× BLEU1 + µ×ROUGE
R1: BLEU1

BLEU2

BLEU3

BLEU4
R2: ROUGE

METEOR

CIDEr

(d) MORL.

Figure 9: Additional results in captioning when measuring performances on all rewards and varying the interpolating coefficients,
complementing Figure 4(b). In Figures 9(a) to 9(c), we extend the results for RS with R1 = BLEU1 and for varying R2; the optimal λ
depends on the similarity between the evaluation metric and R1 and R2. We also see in Figure 9(c) that all rewards are normalized to
1 for the CIDEr-initialization. In Figure 9(d), we perform the same analysis for MORL while varying the weighting µ over the proxy
rewards R1 = BLEU1 and R2 = ROUGE; we recover similar curves than in Figure 4(b) for RS.
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Figure 10: Additional results in captioning with R1 = BLEU1 and R2 = ROUGE. In Figure 10(a), we investigate interpolating the
fine-tuned networks with the pre-trained initialization as in WiSE (Wortsman et al., 2022b); this only reveals a small portion of the front.
In contrast, the interpolation with θMORL (µ = 0.5) solution improves RS’s front: this highlights some limitations in Hypothesis 2 and
strict Pareto optimality of RS. Adding the MORL solutions as intermediate weights may help interpolate between two weights too distant.
This suggests some practical complementarity between RS and MORL; given a training budget larger than the number of rewards, one
may learn a few MORL for varying 0 ≤ µ ≤ 1, and then interpolate the obtained solutions. Figure 10(b) shows results’ variance with two
RL trainings for BLEU, and two for ROUGE, each time with a different seed defining the data ordering and augmentations. Though we
observe some randomness, the Hypothesis 1 is consistently validated. Moreover, it presents the fronts described when we interpolate
weights fine-tuned on a shared reward, as in model soups (MS) (Wortsman et al., 2022a; Ramé et al., 2022). This also only reveals a small
portion of the spectrum of preferences, validating the need for diverse rewards to reveal the full Pareto front. In Figure 4(c), we report the
front of the costly ensembling (Hansen & Salamon, 1990) of predictions (rather than of weights). Actually, ensembling performs better,
but it cannot be fairly compared as its inference cost is doubled. Finally, Figure 10(d) shows the results when the networks are trained
end-to-end, rather than keeping the backbone frozen. This validates the efficiency of rewarded soups in a new more general setting where
all layers are trainable. 26



E. Text-to-image: diffusion models with RLHFs
E.1. Experimental details

Several works have studied the problem of aligning the output of diffusion models with human feedbacks (Lee et al., 2023;
Wu et al., 2023b; Xu et al., 2023). Models are expected to understand specific visual control signals like colors, counts,
and backgrounds more accurately after alignment. Notably, diffusion models can be fine-tuned to match human aesthetics
preferences. As for any subjective metric, there is a variety of reward models that capture different aspects of aesthetic
preference. These models are trained in a supervised setting to match human quality ratings collected on large image datasets
(Xu et al., 2023), like the AVA dataset (Murray et al., 2012). As in the previous sections, RS allows to efficiently optimize
multiple aesthetics reward models at test time, which allows adapting to the preferences of a single user.

We consider three metrics as rewards models: The cafe aesthetics model 1, trained on 3500 real-life and anime/manga
images; An aesthetic score predictor based on CLIP features2, trained on 250 000 images from the AVA dataset (Murray
et al., 2012); we also experiment with a CLIP-based NSFW detector that estimates the probability of an image being "safe"
by computing the cosine similarity with the embeddings of a set of "unsafe" words. The last two reward models are used to
filter the LAION dataset (Schuhmann et al., 2021).

To fine-tune a diffusion model on a reward model R, we first generate 10000 images with the pre-trained diffusion model and
compute the rewards for every generated image. Then, we fine-tune the diffusion model on the reward-weighted negative
log-likelihood (Lee et al., 2023):

L = E(x0,Q)∈D,ϵ∼N (0,1),t∼Uniform(0,T ) r(x0)∥ϵθ(xt, t, Q)− ϵ∥2 (19)

where ϵθ is the noise estimation network, T is the total number of training steps, r(x0) is the reward of image x0 and Q is
the text associated to image x0.

On-policy Reinforcement Learning would normally require to perform loops of image generation and model fine-tuning
(Dong et al., 2023), but we only perform a single optimization loop for simplicity.

Implementation details. We use a 2.2B parameters diffusion model trained on an internal dataset of 300M images, which
reaches similar generation quality as Stable Diffusion (Rombach et al., 2022) in terms of CLIP alignment and FID scores.
For efficient finetuning, we only fine-tune 10% of the diffusion model’s weights (Xie et al., 2023) corresponding to the
cross-attention layers and the bias/scaling parameters. For computational efficiency, we remove the 50% images with
the worse scores, and rescale rewards linearly so that minx0∈D′ r(x0) = 0 and 1

|D′|
∑

x0∈D′ r(x0) = 1. All models are
fine-tuned with Adam (Kingma & Ba, 2015) for 4000 steps with a batch size of 32 and learning rate 5e-6. Fine-tuned
checkpoints and checkpoints interpolated with RS are evaluated on 1000 images.

Table 3: Image generation experiments: key implementation details.

Model
Architecture GLIDE

Fine-tuning objective Reward-weighted Diffusion Loss
Fine-tuning strategy Fine-tuning cross-attention layers and bias/scale parameters

Optimizer Adam (Kingma & Ba, 2015)
Dataset Generated with COCO prompts
Rewards ava (Murray et al., 2012) and cafe

Learning rate 5e-6
Batch size 64

Epochs 25
Hardware Single GPU V100 32G

Compute budget 500 GPUh

1available at https://huggingface.co/cafeai/cafe_aesthetic
2available at https://github.com/christophschuhmann/improved-aesthetic-predictor/
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E.2. Additional results

We show in Figure 11 the spider map when computing MORL and RS on all three metrics: ava, cafe and the nsfw detector.
In this case, MORL has higher scores than RS on the ava and cafe scores. We speculate that this is because the nsfw is very
different from aesthetics preferences and that it can be inversely correlated with image quality: we have indeed noticed that
lower quality images result in higher scores for the nsfw metric, being less often flagged as unsafe.
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Figure 11: Image generation: spider map.

F. Text-to-box: visual grounding
F.1. Experimental details

We show the implementation details in Table 4. We use an internal unified model (Wang et al., 2022a; Lu et al., 2022)
which will be released soon. The model is pre-trained solely on public benchmarks, to solve a variety of multimodal
tasks such as VQA, visual grounding and image captioning. It is then fine-tuned on RefCOCO+ dataset for visual
grounding. During the last fine-tuning phase, we complement the cross-entropy loss with an additional REINFORCE
(Williams, 1992) term rewarding accuracy when the object is of the considered size. This means that the loss for θSmall is
−
(
log(ŷ) + 5× 1{area(ŷ) is small} × 1AUC(y,ŷ)>0.5 × log(y)

)
for an object with ground-truth box ŷ and prediction y. The

image is discretized into 1000× 1000 bins before calculating the box areas. The task is illustrated in Figure 12.

Model

Curly hair 
Purple shirt woman

Green shirt man 

Figure 12: Illustration of the Visual Grounding task. The RS model results from the average of N = 3 weights specialized to detect
respectively small, medium and large objects. The model takes the text (one at a time) as input and outputs the bounding box (i.e., colored
predictions) in the image region described by the text (the ground truths are shown in green). We show an example of small, medium and
large predictions. The texts and image input are from the validation set of RefCOCO+ (Yu et al., 2016).
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Table 4: Visual grounding experiments: key implementation details.

Model

Architecture Unified Model (ResNet-101+BART (Lewis et al., 2020))
Visual encoder ResNet-101
Pretraining Cross-Entropy on Public datasets (VQA, VG, Captioning)
Finetuning Cross-Entropy on RefCOCO+ (Yu et al., 2016)

RL procedure

Fine-tuning strategy end-to-end
Dataset RefCOCO+ (Yu et al., 2016)
RL algorithm Cross-entropy + 5× REINFORCE
Reward Small IoU>0.5 for object with area < 30000
Reward Medium IoU>0.5 for object with 30000 ≤ area < 100000
Reward Large IoU>0.5 for object with 100000 ≤ area
Optimizer Adam
Learning rate 3e-5
Batch size 256
Epochs 10
Hardware 8 GPU 60GB
Compute budget 800 GPUh

F.2. Additional results
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Figure 13: Results in visual grounding on RefCOCO+ (Yu et al., 2016). We use REINFORCE (Williams, 1992) to improve directly the
non-differentiable accuracy, i.e., predict boxes with IoU> 0.5 w.r.t. the ground-truth. Trainings are specialized on either small, medium
or large objects. These experiments complement Figures 5(b) and 5(c). Finally, Figure 13(c) compares between cross-entropy (CE)
supervised fine-tuning (with Cross-entropy CE) and REINFORCE RL fine-tuning, using RS and MORL.
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G. Locomotion with diverse engineered rewards
G.1. Experimental details

Setup and task. This experiment consists in fine-tuning a policy that has already learned how to make an humanoid run on
Brax physics engine (Freeman et al., 2021).

Pre-training. We used the Brax implementation of PPO (Schulman et al., 2017) algorithm to pre-train the base policy used
fine-tuning (see Table 5). The goal task used for pre-training is to make a Humanoid run with the default dense reward
implemented in Brax: R = velocity − 0.5 · aTt at. This phase is also used to collected statistics about observations and
normalize them before inputting to the model, which helps training a lot.

Fine-tuning. The pre-trained policy is saved while the value function is discarded. We use the normalization procedure
inherited from the pre-training but freeze it. We keep the same environment. Two reward functions are designed: a risky one
for R1(t) = velocity and a cautious one where R2(t) = velocity−·aTt at. We make a grid-search on a few hyperparameters
over 3 seeds (see the values between brackets in Table 5).

Table 5: Locomotion experiments: key implementation details.

PPO Pre-training

Interactions 5e8
Reward Scaling 1.0
Episode Length 1000
Normalize observations True
Unroll Length 10
Discounting 0.99
Learning Rate 5e-5
Entropy Cost 1e-3
Number of environments in parallel 4096
Batch Size 1024
Hardware 1GPU Tesla V100-SXM2-16GB
Runtime per experiment 80min

PPO Fine-tuning

Interactions 1e8
Reward Scaling 1.
Normalize observations True
Unroll Length 10
Discounting {0.97, 0.99, 0.999}
Learning Rate (1e-5, 3e-5, 1e-4)
Entropy Cost 1e-3, 3e-3, 1e-2
Number of environments in parallel 4096
Batch Size 1024
Hardware 1GPU Tesla V100-SXM2-16GB
Runtime per experiment 20min

Model architecture

Policy
Architecture MLP
Nb of Layers 6
Hidden Size 512
Value
Architecture MLP
Nb of Layers 5
Hidden Size 256
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G.2. Additional results
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Figure 14: Some other runs for the locomotion task when varying the seed / hyperparameters.
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