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Abstract
In this paper, we study how to learn from inconsis-
tent human feedback in the setting of combinato-
rial bandits with semi-bandit feedback – where an
online learner in every time step chooses a size-
k set of arms, observes a stochastic reward for
each arm, and endeavors to maximize the sum of
the per-arm rewards in the set. We consider the
challenging setting where these per-arm rewards
are not only set-dependent, but also inconsistent:
the expected reward of arm “a” can be larger than
arm “b” in one set, but smaller in another. Incon-
sistency is often observed in practice, falls outside
the purview of many popular semi-bandit models,
and in general can result in it being combinatori-
ally hard to find the optimal set.

Motivated by the observed practice of using UCB-
based algorithms even in settings where they are
not strictly justified, our main contribution is to
present a simple assumption - weak optimal set
consistency. We show that this assumption al-
lows for inconsistent set-dependent arm rewards,
and also subsumes many widely used models
for semi-bandit feedback. Most importantly, we
show that it ensures that a simple UCB-based
algorithm finds the optimal set, and achieves
O
(
min(k

3n log T
ϵ , k2

√
nT log T )

)
regret (which

nearly matches the lower bound).

1. Introduction
Combinatorial bandits (see e.g. (Chen et al., 2013; Saha
& Gopalan, 2019)) model online learning settings where at
each time a set of items has to be selected from a pool, and
the learner subsequently observes set-dependent rewards
which need to be incorporated into future set selection de-
cisions. In this paper we are interested in stochastic combi-
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natorial bandits with semi-bandit feedback (Combes et al.,
2015) - that is, at each time we get to observe a stochastic
reward for each arm in the set that was played, but the dis-
tribution of this observed arm reward depends on the set -
and can be different when different sets containing the same
arm. The reward of a set is the summation of the per-arm
rewards in the set. Combinatorial bandits with semi-bandit
feedback model many real-world sequential recommenda-
tion applications; take for example a setting where a slate of
online advertisements have to be shown to users, who may
subsequently either click on one of them or none of them.
Here each ad corresponds to an arm, a set of ads (i.e. arms)
needs to be selected and shown, and one of them would get
a reward of “1” because it is clicked and the others would
get a reward of “0”. Combinatorial bandit settings allow for
the click-probability of an ad (i.e. the value of an arm) to de-
pend on the set in which it was presented (Saha & Gopalan,
2019).

In this paper, we are interested in inconsistent and possibly
contradictory preferences: that is, we can have two arms
a and b and two sets s1 and s2, so that in expectation, arm a
is more valuable than arm b in set s1, but b is more valuable
than a in s2. It has been repeatedly observed that human
preferences are typically constructed only when offered a
set of alternatives, and the preference can be inconsistent
across different sets. For instance, an empirical study on
“selection of college applicants” showed that evaluators of-
ten prefer student A over B, B over C and C over A when
compared in pairs of two (Tversky, 1969); people exhibit
inconsistent preferences for eco-friendly products under
different contexts (MacDonald et al., 2009); and the well-
known “framing effect”, where “reversals of preference are
induced by changes in the reference points” (Kagel & Roth,
2020).

However, many popular parametric models (e.g. multino-
mial logits, random utility, etc.) do not allow for such
inconsistencies in arm rewards. Indeed, in the worst case,
general inconsistent preferences imply that the play of one
set will reveal absolutely nothing about any other - an impos-
sible situation for an online learner. Meanwhile, in practice,
a simple approach is seen to work even with inconsistent
preferences (e.g. the closely-related Sparring algorithm by
Ailon et al., 2014): maintain a per-arm UCB as would be
done if this was a simple non-combinatorial bandit problem,
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Algorithm Regret Best Set Set-Dep. Reward Inconsistent Preferences

CUCB (Chen et al., 2013) O
(

k2n log T
ϵ

)
✓ ✗ ✗

CombUCB1 (Kveton et al., 2015b) O
(

kn log T
ϵ

)
✓ ✗ ✗

ESCB (Combes et al., 2015) O
(√

kn log T
ϵ

)
✓ ✗ ✗

MNL-TS (Agrawal et al., 2017) O
(√

NT log TK
)

✓ ✓ (MNL) ✗

Explor.-Exploit. (Agrawal et al., 2019) O
(

kn log T
ϵ

)
✓ ✓ (MNL) ✗

MaxMin-UCB (Saha & Gopalan, 2019) O
(

n log T
ϵ

)
✗ ✓ (MNL) ✗

Rec-MaxMin-UCB (Saha & Gopalan, 2019) O
(

n log T
kϵ

)
✓ ✓ (MNL) ✗

Choice Bandits (Agarwal et al., 2020a) O
(

n2 logn
ϵ2 + n log T

ϵ2

)
✗ ✓ ✓

Algorithm 1 (Ours) O
(
min

(
k3n log T

ϵ , k2
√
nT log T

))
✓ ✓ ✓

Table 1. Regret upper bounds and settings for stochastic combinatorial bandits. The checkmarks in “Best Set” mean that the algorithms
are designed for finding the best size-k set, while cross marks mean the algorithms aim to identify the best arm. The checkmarks in
“Set-Dep. Reward” represent that the reward distribution of arms depends on the set they reside in, while cross marks mean the rewards of
the arms are generated independent of the set. The cross marks in “Inconsistent Preference” correspond to assuming individual arms to
have intrinsic value, and therefore a consistent preference among the arms, while checkmarks are for the algorithms that do not require
such assumption.

and in every step pick the k arms for which these UCB
estimates are the highest. This behavior is seen even though
this is clearly a setting UCB was not designed for, and for
which there is little theoretical understanding. We, therefore,
seek a theoretical understanding of the following question:

Why does UCB work for combinatorial bandits, even when
the relative goodness of arms is inconsistent (and possibly

contradictory) in different sets?

Notice that existing analysis of UCB does not provide
a regret bound when the preference is set-dependent
and inconsistent, as there are no fixed expected rewards
(or any notion of intrinsic value) associated with the arms.
One suboptimal arm, under inconsistent preferences, can
have large reward expectations in many suboptimal sets and
therefore has large UCB, which potentially leads to linear
regret.

In this paper, we present a surprisingly weak assumption
that allows for inconsistent preferences, generalizes many
popular parametric (and consistent) models, and most impor-
tantly guarantees that UCB finds the best set. In particular,
our main contributions are summarized below:

• We first present the weak optimal set consistency (WOSC)
assumption (Assumption 1). WOSC only requires that the
reward for any individual arm in the optimal set should
be less than the reward for that same arm when it is in
any other set, and nothing else. This clearly allows for
inconsistent orderings, but interestingly also includes as
special cases many commonly adopted parametric reward
models (e.g., multinomial logit, and random utility model,
etc.).

• We next present a novel analysis of the UCB-based al-
gorithm under the WOSC assumption. Here by UCB-
based algorithm we refer to the method where (a) an
upper confidence bound is maintained and updated for
each arm in the classical way (i.e. ignoring that arm
rewards are in reality set dependent), and (b) at each
time we choose the k arms with the highest upper confi-
dence bound values; the algorithm is described formally
in (Algorithm 1). We prove that this algorithm has a gap-
dependent O(nk3 log T/ϵ) regret upper bound, as well as
a gap-independent O(k2

√
nT log T ) regret upper bound

(Theorem 3). Here n is the total number of arms, k is the
size of selected set s, T is the time horizon and ϵ is the
minimum gap between the optimal and sub-optimal set.

• Finally, we prove a regret lower bound Ω(n log T
ϵ ) (The-

orem 4) under WOSC. The lower bound nearly matches
the regret bound of UCB-based algorithm for constant k
(which is common in practice, e.g., constant number of
advertisement displaying slots), up to logarithmic factors.

2. Related Work
Established Reward Model with Consistent Preferences.
There is a large volume of reward models established for
combinatorial bandits. Most of them rely on an (implicit)
assumption of consistent preferences. The simplest reward
model assumes the reward of each arm is generated in-
dependent of the selected set (Chen et al., 2013; Kveton
et al., 2015b; Combes et al., 2015; Simchowitz et al., 2016).
(Farias et al., 2013) assumes a non-parametric reward model,
but still requires a consistent preference over the arms.
Other works adopt more complicated models to capture

2



UCB Provably Learns From Inconsistent Human Feedback

the set-dependent reward distribution and assume consistent
preferences over the arms. For example, the Multinomial
Logit Model (MNL) assumes a deterministic utility associ-
ated with each arm, which induces a consistent preference
(Abeliuk et al., 2016; Agrawal et al., 2019; Saha & Gopalan,
2019; Flores et al., 2019). Désir et al. (2015); Blanchet et al.
(2016) approximate the user’s choice as a random walk on
a Markov chain. Berbeglia (2016) shows that the discrete
choice model and the Markov chain model can be viewed
as instances of a “random utility model” (RUM), which also
assumes a consistent preference.

As will be discussed in Section 3.3, all the mentioned reward
models that assume consistent preferences are subsumed
by our general “weak optimal set consistency” assumption
(Assumption 1), and therefore are covered by our proposed
algorithm and analysis.

Inconsistent Preference. There are also other works con-
sidering inconsistent preferences, but focus on problem set-
tings different from ours. The Choice Bandits (Agarwal
et al., 2020a) assumes there exists a single best arm that
has the largest expected reward in any set. Further, many
recent dueling bandits works (Ramamohan et al., 2016; Wu
& Liu, 2016; Sui et al., 2018) also extend to inconsistent
preferences (in the absence of Condorcet winner), and con-
sider Copeland winner (Zoghi et al., 2015; Komiyama et al.,
2016), Borda winner (Urvoy et al., 2013; Jamieson et al.,
2015), and von Neumann winner (Dudı́k et al., 2015). Their
goal, however, is to find the best single arm, instead of find-
ing the optimal set of arms. Dimakopoulou et al. (2019)
considers a setting where the preferences may not be con-
sistent, but provides no theoretical regret guarantee. (Kale
et al., 2010; Han et al., 2021) present results on adversarial
combinatorial bandits, whereas our focus is on stochastic
bandits problem.

The Scope of Our Paper. While our assumption is gen-
eral and subsumes many previously studied combinatorial
bandits settings as special cases, there are also important
(and seemingly relevant) problems that do not fit into the
scope of this paper. Here we distinguish our setting from
several other widely studied settings.

(a) Dueling bandits (Yue et al., 2012) focuses on how one
can learn from the comparisons of 2 arms (Zoghi et al., 2013;
Komiyama et al., 2015) or multiple arms (Brost et al., 2016;
Sui et al., 2017; Saha & Gopalan, 2018; 2019) to find the
best arm. They all focus on recovering the single best arm,
instead of the best set, which is different from our setting.
(b) Bandits with submodular reward function (Streeter &
Golovin, 2007; Streeter et al., 2010; Yue & Guestrin, 2011;
Hazan & Kale, 2012; Gabillon et al., 2013; Chen et al.,
2017) assumes that a arm’s marginal contribution to the
set reward is inversely proportional to the reward of a set.

Our “weak optimal set consistency” assumption is concep-
tually related to submodularity. However, our result is not
directly comparable with the results for submodularity as
the formal definition of submodularity involves sets with
different sizes whereas we focus on fixed set size k. (c)
Another seemingly relevant line of work is bandits with cas-
cade feedback (Radlinski et al., 2008; Kveton et al., 2015a;
Zong et al., 2016; Lagrée et al., 2016; Cheung et al., 2019),
for which the reward depends on the position of the arm in
the offered list, whereas ours consider the played set to be
orderless. (d) Non-additive reward function. (Rhuggenaath
et al., 2020; Agarwal et al., 2020b; 2021) focus on a setting
where the reward of each individual arm is independently
generated and the set reward is some non-additive function.
Our focus, on the other hand, is the setting where the in-
dividual arms’ rewards are set-dependent and the relative
order is not consistent in different sets.

3. Problem Setup and WOSC Assumption
In this section, we first formally describe our combinato-
rial bandits with semi-bandit feedback problem, and then
present a motivating example for inconsistent preferences.
We then formally present the weak optimal set consistency
(WOSC) assumption (Assumption 1) and show how it al-
lows for inconsistent preferences. Further, we define the
“consistent preferences” (Definition 1), and show that many
widely studied models (MNL, RUM, etc.) assume consistent
preferences and are covered by WOSC.

Stochastic combinatorial multi-armed bandits problem
with semi-bandit feedback. Given a fixed set of arms
A = {a1, a2, · · · , an}, let S denote all the size-k subsets
of A. At each time step t, the online learner selects a set
s(t) ∈ S, and then observes a per-arm stochastic reward
Xa,s(t) of all its arms a ∈ s(t). The stochastic reward for
the set s(t) is

∑
a∈s(t) Xa,s(t) – i.e. the set reward is the

sum of the (set-dependent) per-arm rewards.

This setup models, for example, click-through rates: every
time a set is presented to a user, the learner gets to observe
the arms which were clicked and which were not, and in
turn is trying to maximize the total overall number of clicks.
We allow the probability of an arm being clicked to depend
on the set, and be possibly inconsistent across sets.

We denote the expected reward of arm a in set s to be
Qs(a) ≜ E [Xa,s]. The optimal set is denoted by s∗ ≜
argmaxs

∑
a∈s Qs(a), and finally, the regret for time t is

reg(t) =
∑
a∈s∗

Qs∗(a)−
∑

a∈s(t)

Qs(t)(a),

and the regret up to time T is R(T ) ≜ E
(∑T

t=1 reg(t)
)

.
The online learner aims to minimize R(T ).
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Before formally introducing our assumption for inconsistent
preferences, we first present a motivating example.

3.1. A Motivating Example

Consider a synthetic example of providing recommenda-
tions to a customer looking for cameras. There are 6 candi-
dates {Nikon, Sony, Canon, Digital Camera,
Keyboard, Shoes}. Every time we need to offer 3 rec-
ommendations and the customer accepts at most one of
them. A customer’s acceptance gives the recommendation
reward 1 and otherwise gives reward 0.

Suppose the user is interested in {Nikon, Sony,
Canon}, but when some of them are not recommended, the
Digital Camera recommendation will partially capture
the corresponding interest.

Specifically, we set the expected reward to be
Q·(Nikon) = 0.35, Q·(Canon) = 0.3, Q·(Sony) =
0.25, Q·(Keyboard) = 0.01, Q·(Shoes) = 0.01,
where the dot means any set containing the concerning
recommendation. Further, set Qs(Digital Camera) =
0.85 −

∑
a∈s,a̸=Digital CameraQs(a). We show 4 repre-

sentative sets in Figure 1. It can be verified that the optimal
set is {Nikon, Sony, Canon} as the total expected
reward is the highest 0.9.

Notice that the existence of the recommendation Digital
Camera makes the problem harder. As shown in Figure 1,
the Digital Camera has the highest accepting proba-
bility in many sets. Further, observe that a user is more
likely to accept Digital Camera than Nikon in Set #3,
whereas Nikon belongs to the optimal set. This makes
Digital Camera seemingly a good recommendation,
but it is not part of the optimal set.

Generally, it is conceivable that there are cases where the
optimal arms are not the best in all sets, and there exist sub-
optimal arms that have higher expected rewards in many
sets. The UCB-based algorithm (which is widely used as
a heuristic under inconsistent preferences) can, therefore,
over-value some suboptimal arms and thus has linear regret.

In the following sections, however, we theoretically show
that the UCB-based algorithm has near-optimal regret even
under some inconsistent preferences. The crux is adopting
the weak optimal set consistency assumption, which is for-
mally defined in the next subsection. The WOSC assump-
tion allows for inconsistent preferences, subsumes many
previously studied reward models, and most importantly,
guarantees that UCB finds the optimal set.

3.2. WOSC Assumption

Here we formally define the WOSC assumption and show
how it allows for inconsistent preferences.

Assumption 1 (Weak Optimal Set Consistency (WOSC)).
Let s∗ be the optimal set, s be any other set and arm a ∈
s ∩ s∗ be in both sets. Then WOSC requires that Qs(a) ≥
Qs∗(a) – i.e. arm a’s individual reward in s is larger than
its individual reward in s∗.

Remark 1: WOSC means that the optimal set s∗ is the most
competitive set – while the overall sum of arm rewards is
highest in s∗, any arm would have fared better in a different
set because that set would have less competitive options.

Remark 2: One salient feature of WOSC is not assuming
consistent preferences over arms a ∈ A at any time t. We
first present an example that is allowed by our assumption
but not other commonly seen reward models. We then
formally discuss the “consistent preference” in the next
subsection.

Example 1. For any k > 2, without loss of generality, we
take a1 ∈ s∗, a2 ∈ s∗ with Qs∗(a1) ≥ Qs∗(a2). For some
sub-optimal set si, Assumption 1 allows for:

1. Reversed relative reward expectation:

Qs∗(a1) ≥ Qs∗(a2), Qs1(a2) > Qs1(a1),

for some s1 containing a1, a2.

2. Non-transitive relative reward expectation: for some
s4 containing a2, a3, and s5 containing a1, a3,

Qs∗(a1) > Qs∗(a2), Qs4(a2) > Qs4(a3),

Qs5(a3) > Qs5(a1).

Note that the s5 in the “non-transitive” part of Example 1
also shows that Assumption 1 allows the arms not in s∗ to
be better than the arms belonging to s∗ in some sub-optimal
set. This corresponds to the Digital Camera in the
motivating example in Section 3.1.

3.3. Existing Models are Strongly Consistent

Informally, consistent preferences mean that one arm is
intrinsically more valuable than another, irrespective of the
sets in which both those arms are presented. In this section,
we first formally define consistent preferences, and then
show that three widely used models – multinomial logit,
random utility, and independent reward – implicitly assume
consistent preferences. As mentioned above, our WOSC
assumption covers cases that are not consistent; however,
in this section, we show that it also covers any strongly
consistent setting.

Definition 1 (Strong Consistent Preferences). Set dependent
arm rewards {Qs(a)} are said to represent strong consistent
preferences if there exists a total ordering of arms. In
particular, for any pair of arms ai and aj such that ai ≻ aj ,
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Nikon
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Figure 1. Four representative sets. The set #1 is optimal, as it maximizes the sum of the accepting probability of the recommendations.
The Digital Camera has the highest accepting probability in many sub-optimal sets (even when paired with the recommendations
belonging to the optimal set. See set #3). Such instances break the consistent preferences, but are covered by Assumption 1.

and any corresponding pair of size-k sets s and s′ which
differ only in these arms – i.e. s = s′ − aj + ai we have
that the set-dependent arm rewards satisfy

Qs(ai) ≥ Qs′(aj) and Qs(a) ≤ Qs′(a), ∀a ∈ s ∩ s′.

Further, the total set rewards also satisfy
∑

a∈s Qs(a) ≥∑
a∈s′ Qs′(a).

We now show here that three widely adopted reward models
all assume a “strong consistent preference”, which are all
also covered by WOSC (Assumption 1). For clarity of
exposition, here we focus on the binary reward with Xa,s ∈
{0, 1} and Qs(a) is therefore the probability that a receives
reward 1 in set s.

Multinomial Logit (MNL): MNL assumes a deterministic
utility vi associated with each ai and the probability of ai
receiving non-zero reward in s is Qs(ai) =

evi

ev0+
∑

aj∈s evj
,

where v0 is some constant modeling the event of no arm re-
ceiving non-zero reward. One can verify that the vis of MNL
induce strong consistent preferences and the optimal set s∗

is composed by arms with highest vi. Assumption 1 covers
MNL since ev0 +

∑
aj∈s e

vj ≤ ev0 +
∑

aj∈s∗ e
vj ,∀s ̸= s∗.

Random utility model (RUM): RUM assumes a (random)
utility associated for all ai ∈ A, with Ui = vi + ϵi,
where vi is a deterministic utility and ϵis are i.i.d. ran-
dom variables drawn at every time step t. The proba-
bility of ai in s receiving non-zero reward is given by
Qs(ai) = P (Ui > Uj ,∀aj ∈ s and i ̸= j). To model the
event of no arm a ∈ s receiving non-zero reward, s can
be augmented to s ∪ {a0}, with random utility U0 of a0
defined similarly. When U0 is the largest, no arm a ∈ s
receives non-zero reward. It can be verified that vis in RUM
induce a strong consistent preference, and the optimal set s∗

is composed by arms with highest vi. For any arm a ∈ s∗,
putting it to a sub-optimal set s leads to arm a having a
larger chance of receiving non-zero reward, as other arms
have smaller vi, thus satisfies Assumption 1.

Independent reward: Independent reward model assumes
a deterministic reward expectation vi associated with arm
ai. For the arm ai in any set s, it assumes Qs(ai) = vi. The
vis immediately induce a strong consistent preference. The
independent reward model is also covered by Assumption 1,
as Qs(ai) does not change in different s.

Finally, we show that the WOSC assumption represents a
strict generalization of strong consistent preferences. That
is, it subsumes all strongly consistent reward models, but
also allows for inconsistent models.

Lemma 2. Any reward model {Qs(a)} that represents
strong consistent preferences also satisfies WOSC (Assump-
tion 1). However, the reverse is not true; there exist reward
models that satisfy WOSC but do not represent strong con-
sistent preferences.

We defer the proof to Appendix B.

4. UCB-based Algorithm and Regret Analysis
In this section, we formally describe the simple UCB-based
algorithm for combinatorial bandits, and present its regret
bounds (both gap-dependent and gap-independent). We
present a novel way of analyzing UCB, while allowing set-
dependent arm rewards as long as WOSC is satisfied.

We emphasize that our main contribution is not in algorith-
mic innovation, but in rigorously proving that the UCB-
based algorithm achieves near-optimal regret under incon-
sistent preferences (Assumption 1).

4.1. Algorithm

Denote Ni(t) to be the number of times that ai is included
in the selected set s up to time t, Ci(t) to be the cumulative
reward of arm ai at time t. We have Algorithm 1 that extends
the standard α-UCB algorithm. It selects a set of arms with
top-k UCB in each step. It is worth noting that Algorithm 1
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only keeps track of the cumulative reward of the arms in
A, without accounting for any set-dependent information.
Though it may seem contradictory to the set-dependent
reward distribution, we will show that Algorithm 1 achieves
near-optimal regret.

Algorithm 1 UCB-BASED ALGORITHM FOR COMBINA-
TORIAL BANDITS WITH INCONSISTENT PREFERENCES

1: Online learning task: Given a set of arms, in each
time choose a size-k subset so as to maximize reward.
Feedback in every step is a stochastic reward for every
arm in that chosen set; the distribution of these rewards
can be set-dependent, and inconsistent across sets.

2: Input: arm set A of size n, set size k, time horizon T ,
rewards bounded by B

3: Parameter: A constant α, normally set to 2
4: Initialize: UCBi(1) = INF, Ni(1) = 0, Ci(1) = 0 for

all arm ai ∈ A
5: for t = 1 to T do
6: Construct set s(t) with arms that have top-k UCBi(t),

ties break randomly. For all ai ∈ s(t), Set Ni(t +
1) = Ni(t) + 1

7: Observe feedback. Set Ci(t+ 1) = Ci(t) +Xai,s(t)

8: UCBi(t + 1) = Ci(t+1)
Ni(t+1) + B

√
α log T
Ni(t+1) , for all arm

ai ∈ s(t), and UCBi(t+ 1) = UCBi(t), for others
9: end for

4.2. Regret Bound

Let ϵ =
∑

a∈s∗ Qs∗(a)−maxs̸=s∗
∑

a∈s Qs(a) denote the
minimum gap in expected reward between the optimal set
s∗ and any sub-optimal set s. Recall that k is the size of the
selected set s, and n is the size of A. Suppose the reward
Xa,s is bounded by B (i.e., Xa,s ∈ [0, B]) for all a and s.
Our next result provides a regret bound of Algorithm 1.
Theorem 3 (Regret Bound of Algorithm 1). For combinato-
rial bandits problem under Assumption 1, run Algorithm 1
with parameter α ≥ 2, we have

R(T ) ≤ O

(
min

(
B2k3n log T

ϵ
,Bk2

√
nT log T

))
.

For the “well-separated” problem (i.e., ϵ is large), the re-
gret scales with log T ; and when the sub-optimality gap ϵ
is small, the gap-independent bound Bk2

√
nT log T will

dominate the min, and this recovers the standard gap-
independent Õ(

√
T ) regret scaling.

Further, we have the following regret lower bound for the
combinatorial bandits under WOSC.
Theorem 4 (Regret Lower Bound). For any online learning
algorithm that achieves o(T c) regret for all constant c > 0,
there exists a problem instance that satisfies Assumption 1,
such that the algorithm induces a regret of Ω

(
B2n log T

ϵ

)
.
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Figure 2. Evolution of UCB in the environment defined in Section 3.1.
Observation: the UCB of all arms decreases together initially, and
the arms in the optimal set separate out later. ρ(t) (a “lower bound”
of the played arms’ UCB, formally defined Section 4.3) precisely cap-
tures this decreasing-together dynamics. As ρ(t) decreases, the UCB
of two recommendations Nikon, Canon, belonging to the opti-
mal set, separate out from ρ(t), and are therefore included in all the
subsequently played sets. This happens with Digital Camera
having the largest reward expectation in many suboptimal sets.

The dependency of B,n, T, ϵ in the lower bound matches
the gap-dependent upper bound (Theorem 3). For k be-
ing constant, which is commonly seen in practice (e.g., a
constant number of displaying slots in online recommenda-
tion systems), our regret bound nearly matches the lower
bound up to logarithmic terms. This shows the optimality
of Algorithm 1 despite inconsistent preferences.

Regret Upper Bound Analysis Intuition To see how
the UCB-based algorithm works under WOSC, we first
present an illustrative experiment here. The environ-
ment is the motivating example presented in Section 3.1,
where the optimal set is {Nikon, Canon, Sony} but
Digital Camera has the highest reward expectation in
many sets.

Figure 2 shows the process of the UCB-based algorithm
converging to the optimal set. The observation is that the
UCB of most arms decreases together, and the UCB of the
optimal arms sequentially separates out.

The regret analysis follows this observation closely and can
be summarized as 3 steps:

• Step I: proving that the UCB of the optimal arms stays
large. The WOSC assumption is invoked here, which
guarantees that the UCB of an optimal arm ai is always
larger than Qs∗(ai).

• Step II: showing that the UCB of most of the arms de-
creases together and stays close to each other (character-
ized by ρ(t), see Figure 2 and definition in Section 4.3).

6
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• Step III: showing ρ(t) can not stay high for a long time,
which is then converted into a regret bound.

All our analysis focuses on characterizing the dynamics of
UCB – how the UCB of the optimal arms and other arms
decays. It does not require the arms to have fixed reward
expectations or consistent preferences, which is drastically
different from the standard UCB analysis.

4.3. Proof Sketch

The following results are for Algorithm 1 with α ≥ 2.
We sketch the proof into 3 steps, which correspond to
our discussion for analysis intuition. W.l.o.g., let s∗ =
{a1, a2, · · · , ak} with Qs∗(a1) ≥ · · · ≥ Qs∗(ak).

Step I: UCB of optimal arms stays large.

We first show that the UCBi(t) of ai ∈ s∗ is lower bounded
by Qs∗(ai) for all time steps, with high probability.

Lemma 5 (UCB is optimistic). With probability at least
1− 2

T , we have UCBi(t) ≥ Qs∗(ai) simultaneously for all
time step t ∈ [T ] and all arm ai ∈ s∗.

This follows from the WOSC assumption, where the ex-
pected reward Qs(ai) ≥ Qs∗(ai) for all s ̸= s∗ and
ai ∈ s ∩ s∗. Therefore, as long as UCBi(t) is an opti-
mistic estimate (i.e., UCBi(t) ≥

∑t
τ=1 Qs(τ)(ai)/Ni(t),

see Corollary 10), we have that UCBi(t) ≥ Qs∗(ai), with
high probability.

Step II: UCB of most arms decay together as ρ(t).

Here we formalize the observation in Figure 2. Let
ρ′(t) = minai∈s(t) UCBi(t), and ρ(t) = minτ≤t ρ

′(τ).
By definition, ρ(t) is monotonically non-increasing, and
UCBi(t) ≥ ρ′(t) ≥ ρ(t), ∀ai ∈ s(t), (i.e., ρ(t) is a lower
bound for the UCB of the arms in s(t)).

The following lemma shows that for the arms not in s(t),
ρ(t) is always an upper bound, and soon a tight estimate of
all their UCB.

Lemma 6 (Dynamics of UCB). ρ(t) ≥ UCBi(t) ≥
ρ(t)

(
1− 1

Ni(t)

)
, ∀ai /∈ s(t),∀t ∈ [T ].

Proof. For any arm ai /∈ s(t), let t′ ≤ t be the last time
step that ai ∈ s(t′). We then have

Ci(t
′) +

√
αNi(t′) log T ≥ ρ′(t′)Ni(t

′)

≥ ρ(t′)Ni(t
′) ≥ ρ(t)Ni(t

′).

The last step holds as ρ(t) is non-increasing. With Ci(t) ≥
Ci(t

′) and Ni(t) = Ni(t
′) + 1, we have

Ci(t) +
√

αNi(t) log T ≥ ρ(t) (Ni(t)− 1) .

Dividing both sides by Ni(t) gives the second inequality. It
is left to show ρ(t) ≥ UCBi(t), ∀ai /∈ s(t). Let t′′ ≤ t be
the last time step ρ′(t′′) = ρ(t). It implies

ρ′(τ) > ρ′(t′′) = ρ(t) ≥ UCBi(t
′′),

∀τ ∈ (t′′, t], ai /∈ s(t′′).

Notice that UCBi(τ+1) = UCB(τ) if ai /∈ s(τ). Therefore
for any ai /∈ s(t′′), it implies ai /∈ s(τ),∀τ ∈ [t′′, t].

Notice that there are (n− k) arms not in s(t) and the same
number of arms not in s(t′′), we have ai /∈ s(t′′) ⇐⇒
ai /∈ s(t). Thus

UCBi(t) = UCBi(t
′′) ≤ ρ′(t′′) = ρ(t), ∀ai /∈ s(t).

This completes the proof.

Note that Lemma 6 implies that all arms ai with UCBi(t) ≥
ρ(t) are included in s(t). Therefore, combining with
Lemma 5, we know that for all ai ∈ s∗, with probability at
least 1− 2

T , once ρ(t) falls below Qs∗(ai), the subsequently
played sets s(t) will always contain ai. As ρ(t) keeps de-
creasing, the optimal set s∗ will be recovered sequentially,
from a1 to ak.

Step III: ρ(t) can not stay large for long.

The rest of the proof focuses on characterizing how fast ρ(t)
decays and converting it to a regret bound. Notice that ρ(t)
is the rolling-min of ρ′(t) and is, therefore, monotonically
non-increasing by definition. For l ≤ k, let time tl be the
last time that ρ(tl) ≥ Qs∗(al). Let t′l be the number of times
that s∗ is selected before tl. Lemma 7 presents a bound for
the number of times that sub-optimal sets are played before
tl, which is measured by tl − t′l.

Lemma 7 (Bound the times of selecting sub-optimal set).
With probability at least 1 − 2

T , we can bound tl − t′l, for
all l ∈ [k] as,

tl − t′l ≤
40αB2lkn log T

(∆l + ϵ)
2 , if ∆l ≥

ϵ

10
; and

tl − t′l ≤
40αB2lkn log T

ϵ2
, otherwise,

where ∆l :=
∑k

i=l [Qs∗(al)−Qs∗(ai)].

Remark 3: Suppose ρ(T ) ≥ Qs∗(al) for some al ∈ s∗ (i.e.,
ρ(t) does not fall below Qs∗(al) for the entire time horizon),
we have that tl = T by definition, and Lemma 7 still holds.

We emphasize that Lemma 7 is crucial to prove regret bound
with inconsistent preferences (Assumption 1), as it does not
rely on each arm having a set-independent reward expec-
tation, which is drastically different from existing UCB
analysis. The next lemma connects regret R(T ) to tl − t′l
for l ≤ k.

7
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Figure 3. Synthetic experiments with different reward models. The curves are the averages and standard deviations of 5 independent runs.
The “UCB w/ Inconsist. Pref.” is Algorithm 1 with α = 2. “E-E MNL-bandit” refers to the “Exploration-Exploitation algorithm for
MNL-Bandit” (Agrawal et al., 2019). “Stagewise Elimination” was proposed in (Simchowitz et al., 2016). The parameters are specified as
in the original papers.

Lemma 8 (Regret decomposition). With probability at least
1− 2

T , we have

R(T ) ≤2B
√
αkn(tk − t′k) log T

+

k−1∑
l=1

δlk (tl − t′l) + nQs∗(ak).

where δij := Qs∗(ai)−Qs∗(aj).

Combining Lemmas 7 and 8 proves Theorem 3.

5. Experiments
We empirically evaluate Algorithm 1 on environments with
different reward models (see Figure 3) satisfying the WOSC
assumption. It demonstrates that the UCB-based algorithm
is indeed able to deliver great empirical performance under
WOSC, despite the set-dependent reward distributions and
inconsistent preferences. We summarize the environments
below, with details provided in Appendix E.

Multinomial Logit: We generate n = 20 arms, where each
arm ai has an intrinsic value vi = log(1 − 0.04i). The
MNL model is used to determine the reward expectation
Qs(ai) =

evi

ev0+
∑

aj∈s evj
, with v0 = 0. The set size is set

to k = 10 and the number of possible sets is 184, 756.

Random Utility Model: We generate n = 20 arms, where
each arm ai has an intrinsic utility vi = 1− 0.04i. In every
step, the random utility Ui of all arms in the set s(t) are
independently generated with mean µi and unit variance
from Gaussian distribution. Besides that, the null arm a0
will draw a U0 ∼ N (2, 1). If U0 is the maximum, then the
entire set receives 0 reward. Otherwise, the arm with the
largest random utility Ui receives the reward 1 and others
receive 0. The set size is set to k = 5 and the number of
possible sets is 15, 504.

Preference Matrix: We set the total number of arms to n =
10 and the set size to k = 2, then directly specify a 10-by-10
preference matrix M to determine the probability of an arm
receiving a reward. In particular, we set the matrix such that
the preference is inconsistent – while s∗ = {a1, a2} with
Qs∗(a1) = 0.47 and Qs∗(a2) = 0.45, the suboptimal arm

a3 has a large reward expectation when paired with other
suboptimal arms (i.e., Qs(a3) = 0.675 for s not containing
a1, a2). Therefore a3 has the potential of being falsely
recognized as an optimal arm, which leads to linear regret.

Random Weak Optimal Set Consistency: We randomly
generate the environment that satisfies Assumption 1 via
rejection sampling. We set the total number of arms to
n = 10 and the set size to k = 5. Notice that these randomly
generated environments need not satisfy the assumption of
the MNL model (or RUM) other than Assumption 1.

Along with Algorithm 1, we also take “E-E for MNL-bandit”
(Exploration-Exploitation algorithm for MNL, (Agrawal
et al., 2019)) and “Stagewise Elimination” (Simchowitz
et al., 2016) for comparisons, which are designed for “Multi-
nomial Logit” and “Random Utility Model” environment,
respectively. The algorithms are tested in the environments
listed above. The average regret and standard deviation of 5
independent runs are reported in Figure 3.

“E-E for MNL-bandit” and “Stagewise Elim” perform rel-
atively well in the environments that they are designed for.
Note that in the “Preference Matrix” environment and “Ran-
dom Weak Optimal Set Consistency” environment, there is
no consistent preference among the arms. The “Stagewise
Elimination” falsely eliminates an arm that belongs to the
optimal set, and therefore suffers from linear regret. Despite
the inconsistent preferences, all evaluated environments
satisfy WOSC (Assumption 1) and the UCB algorithm (Al-
gorithm 1) performs the best in all the testing environments.

6. Conclusion
In this paper, we study the combinatorial bandits with semi-
bandit feedback under inconsistent preferences. We for-
mally present a general assumption: weak optimal set con-
sistency (WOSC), which allows for inconsistent preferences
and subsumes many existing preference models (MNL,
RUM, etc.). Under the WOSC assumption, we present
a novel analysis for the UCB-based algorithm, which is
widely used under inconsistent preferences as a heuristic
algorithm with little theoretical understanding. Our anal-
ysis shows that, for constant k (the set size), the simple
UCB-based algorithm is nearly optimal under WOSC.
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A. Regret Lower Bound Proof
Proof. We prove the lower bound by constructing a family of environments Ei, i ∈ [n]. We define the arm set as
A = {a1, · · · , an+k−1} and consider the binary reward Xai,s ∈ {0, B}. In particular, we focus on the regime where n ≫ k
and B > 1.

In environment Ei, the optimal set is {ai, an+1, an+2 · · · , an+k−1}. We assume the arms {a1, an+1, an+2 · · · , an+k−1} to
have 1

2 probability of receiving reward B in any set in any environment, and arm ai has probability 1
2 + ϵ

B of receiving
reward B in any set in environment Ei for i ∈ [2, n]. All other arms not belonging to the optimal set have 1

2 − ϵ
B probability

of receiving positive reward in any set. It’s easy to verify that all environments Ei satisfies Assumption 1 and the minimum
gap between optimal and sub-optimal set is ϵ. We then have the following regret lower bound.

Let qi be the probability measure in environment Ei. The proof follows by showing that, for all j ∈ [2, n], any algorithm has
Eq1(Nj(T )) = Ω(B2 log T/ϵ2) when the algorithm achieves o(T a) regret in environment Ej and E1.

For any j ∈ [2, n], define the event Bj =
{
Nj(T ) ≤ B2 log T/ϵ2

}
. We prove the lower bound on Eq1(Nj(T )) by two

cases. We first start with the simple one:

Case I: q1(Bj) < 1/3. We have

Eq1(Nj(T )|q1(Bj) < 1/3) ≥ q1(B
c
j )B

2 log T/ϵ2 = Ω(B2 log T/ϵ2).

Case II: q1(Bj) ≥ 1/3. Note that in environment Ej , the algorithm will incur at least ϵ regret if not selecting aj , Therefore
we have Eqj (T −Nj(T )) = o(T c) for any constant c > 0. By Markov’s inequality, we have

qj(Bj) = qj
({

T −Nj(T ) > T −B2 log T/ϵ2
})

≤
Eqj (T −Nj(T ))

T −B2 log T/ϵ2
= o(T c−1).

From (Karp & Kleinberg, 2007), we know that for any event E and two distributions p, q with p(E) > 1/3 and q(E) < 1/3,
we have

DKL(p; q) ≥
1

3
log(

1

3q(E)
)− 1

e
,

where DKL(p; q) is the KL-divergence of p and q. Putting q1, qj and Bj into the inequality above, we have

DKL(q1; qj) ≥
1

3
log(

1

3o(T c−1)
)− 1

e
= Ω(log T ).

On the other hand, we need to bound the KL-divergence of q1 and qj by playing any set containing aj . Suppose p is a
categorical distribution with parameters p1, ..., pk for k items and p′ is another categorical distribution with parameters
p1 − ϵ1, ..., pk − ϵk, We have

DKL(p, p
′) =

k∑
i=1

(p′i + ϵi) log
p′i + ϵi
p′i

≤
k∑

i=1

(p′i + ϵi)
ϵi
p′i

=

k∑
i=1

ϵ2i
p′i
,

where the last inequality holds because
∑k

i=1 ϵi = 0. Since the only different arm between E1 and Ej is arm aj and the
probability of aj receiving reward B in environment Ej is 1

2 + ϵ
B ≥ 1

3 . We can directly bound the KL-divergence of q1 and
qj by

DKL(q1; qj) ≤ 3Nj(T )
ϵ2

B2
,

It then directly implies that

3Nj(T )
ϵ2

B2
= Ω(log T ) =⇒ Eq1(Nj(T )|q1(Bj) ≥ 1/3) = Ω

(
B2 log T

ϵ2

)
.

Therefore, combining Case I and Case II, we have Eq1(Nj(T )) = Ω(B2 log T/ϵ2), which holds for all j ∈ [2, n]. Notice
that playing aj induces ϵ regret, considering all j ∈ [2, n] gives a regret lower bound Ω(B2n log T/ϵ).
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B. Proof for Section 3
B.1. Proof of Lemma 2

Proof. We first show that any model assuming strong consistent preferences (Definition 1) is covered by WOSC (Assump-
tion 1). By Definition 1, we have the optimal set s∗ is composed by the arms with largest vi. For any sub-optimal set s,
we can construct a sequence of sets s1, s2, · · · , sm, with s1 = s∗, sm = s and each intermediate set si+1 changes one arm
from si into an arm from s. As we start from s∗ and going from si to si+1, we always change an arm into some other arm
with smaller v. Therefore for any arm a ∈ s∗ ∩ s, we have Qsi+1

(a) ≥ Qsi(a). This implies that Qs(a) ≥ Qs∗(a), which
matches Assumption 1.

On the other hand, a model assuming WOSC may not satisfy strong consistent preferences. Consider sets s1, s2 containing
ai and s′1, s

′
2 obtained by replacing ai by aj , such that Qs1(ai) > Qs′1

(aj) and Qs2(ai) < Qs′2
(aj), the weak optimal set

consistency (Assumption 1) allows for such case but it does not satisfy Definition 1.

This completes the proof.

C. Technical Lemmas
Lemma 9. For B-bounded rewards Xa,s (i.e., Xa,s ∈ [0, B]) and α ≥ 2, with probability at least 1 − 2

T , we have the
following inequality holds for all arm ai and all time step t ∈ [T ] simultaneously:∣∣∣∣∣Ci(t)−

t∑
τ=1

Qs(τ)(ai)

∣∣∣∣∣ ≤ B
√
αNi(t) log T .

Proof. Recall that Ni(t) is the number of times that arm ai is played up to time t. Let τj be the time step of the j-th pulling
of arm ai. Notice that if ai is not played at t′, then both Ci(t

′) = Ci(t
′ − 1) and Qs(t′)(ai) = 0. Therefore, we have that

Ci(t)−
t∑

τ=1

Qs(τ)(ai) = Ci(τNi(t))−
Ni(t)∑
j=1

Qs(τj)(ai).

Consider the quantity

Di(q) = Ci(τq)−
q∑

j=1

Qs(τj)(ai),

where q ∈ {0, 1, · · · , Ni(t)}. Di(0) to Di(Ni(t)) is a martingale and Di(Ni(t)) = Ci(t) −
∑t

τ=1 Qs(τ)(ai). Consider

the bad event Bi,m(t) :=
{
Ni(t) = m and |Di(Ni(t))| > B

√
αNi(t) log T

}
, which can be interpreted as “the desired

inequality fails at time step t and the arm ai is played for m times”. By Azuma’s inequality, we have

P (Bi,m(t)) ≤ 2 exp

(
−2αmB2 log T

mB2

)
=

2

T 2α
.

Consider event Bi(t) :=
{
|Di(Nt(t))| > B

√
αNi(t) log T

}
, which can be interpreted as “the desired inequality fails at

time step t for arm ai”. We have Bi(t) = ∪m∈[t]Bi,m(t) and, therefore, with a union bound over m ∈ [t],

P (Bi(t)) ≤
2t

T 2α
≤ 2

T 2α−1
.

Further, with a union bound for all i ∈ [n] and t ∈ [T ], we have that

P

(
∃t ≤ T, ∃i ∈ [n], s.t.

∣∣∣∣∣Ci(t)−
t∑

τ=1

Qs(τ)(ai)

∣∣∣∣∣ > B
√
αNi(t) log T

)
≤ 2n

T 2α−2
.

12
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Notice that for α = 2 and T > n, the inequality above implies that∣∣∣∣∣Ci(t)−
t∑

τ=1

Qs(τ)(ai)

∣∣∣∣∣ ≤ B
√
αNi(t) log T .

holds simultaneously for all i ∈ [n] and t ∈ [T ], with probability at least 1− 2
T .

Corollary 10 (UCB is optimistic). For B-bounded rewards Xa,s (i.e., Xa,s ∈ [0, B]) and α ≥ 2, with probability at least
1− 2

T , we have the following inequality holds for all arm ai and all time step t ∈ [T ] simultaneously:

UCBi(t) ≥
∑t

τ=1 Qs(τ)(ai)

Ni(t)
.

Corollary 11 (Corollary of Lemma 9). For B-bounded rewards Xa,s (i.e., Xa,s ∈ [0, B]) and α ≥ 2, with probability at
least 1− 2

T , we have the following inequality holds for all arm ai and all time step t ∈ [T ] simultaneously:

2B
√
αNi(t) log T ≥ Ni(t)UCBi(t)−

t∑
τ=1

Qs(τ)(ai).

Without loss of generality, we assume s∗ = {a1, a2, · · · , ak} with Qs∗(a1) ≥ Qs∗(a2) ≥ · · · ≥ Qs∗(ak). Recall that ρ(t)
is monotonically non-increasing by definition. Let time tl be the last time t that we have ρ(t) ≥ Qs∗(al) for l ≤ k, we have
the following result. Notice that if there exists an l such that ρ(T ) ≥ Qs∗(al), we have tl = T by definition.

Lemma 12. With probability at least 1− 2
T , for all time steps t > tl, we have {a1, a2, · · · , al} ⊂ s(t).

Proof. The rest of the proof conditions on the event that the inequality in Lemma 9 holds, which happens with probability at
least 1− 2

T .

By definition of UCBi(t), we have

UCBi(t) =
Ci(t)

Ni(t)
+

√
α log T

Ni(t)
≥
∑t

τ=1 Qs(τ)(ai)

Ni(t)
, ∀ai ∈ s∗,∀t ∈ [T ]

Further, by WOSC, we have that Qs(ai) ≥ Qs∗(ai),∀ai ∈ s∗ and all s contains ai. Therefore we have
∑t

τ=1 Qs(τ)(ai)

Ni(t)
≥

Qs∗(ai) and thus UCBi(t) ≥ Qs∗(ai),∀ai ∈ s∗,∀t ∈ [T ].

Notice that Lemma 6 states that for all ai /∈ s(t), we have ρ(t) ≥ UCBi(t). It therefore implies ai ∈ s(t) if UCBi(t) > ρ(t).
When ρ(t) < Qs∗(al) (which happens after tl by the definition of tl and the fact that ρ(t) is non-increasing), we have
UCBi(t) ≥ Qs∗(ai) > ρ(t),∀i ∈ [l]. Therefore we have ai ∈ s(t),∀i ∈ [l],∀t > tl.

Note that when tl = T , the Lemma 12 trivially holds true as there is no time step t after T . Therefore, it concludes the proof
that with probability at least 1− 2

T , for all time steps t > tl, we have {a1, a2, · · · , al} ⊂ s(t).

Let δij ≜ Qs∗(ai)−Qs∗(aj). Recall that tl is the last time step with ρ(tl) ≥ Qs∗(al) we have the following result.

Lemma 13. With probability at least 1− 2
T , we have the following results hold simultaneously for all l ∈ [k]:

B

√
4αkn

(
tl −

l

k
t′l

)
log T ≥

l∑
i=1

Qs∗(ai)tl + (k − l)Qs∗(al)tl −
n∑

i=1

tl∑
τ=1

Qs(τ)(ai)−
l−1∑
i=1

δil(ti − t′i)− nQs∗(al),

and

B
√
4αkn (tl − t′l) log T ≥

n∑
i=k+1

Qs∗(al)Ni(tl) +

k∑
i=1

Qs∗(ai)Ni(tl)−
n∑

i=1

tl∑
τ=1

Qs(τ)(ai)− nQs∗(al).

13
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Proof. The rest of the proof conditions on the event that the inequality in Lemma 9 holds (and therefore the inequalities in
Corollary 11 and lemma 12 hold), which happens with probability at least 1− 2

T .

Proof of the first inequality. Recall that by Lemma 6, we have

UCBi(t) ≥ ρ(t)

(
1− 1

Ni(t)

)
,∀ai /∈ s(t),

and recall the definition of ρ′(t) = minai∈s(t) UCBi(t) and ρ(t) = minτ≤t ρ
′(τ), we have

UCBi(t) ≥ ρ′(t) ≥ ρ(t) ≥ ρ(t)

(
1− 1

Ni(t)

)
,∀ai ∈ s(t).

Therefore, by Corollary 11, for all i ∈ [n] and all l ∈ [k], we have

2B
√
αNi(tl) log T ≥Ni(tl)UCBi(tl)−

tl∑
τ=1

Qs(τ)(ai)

≥Ni(tl)ρ(tl)

(
1− 1

Ni(t)

)
−

tl∑
τ=1

Qs(τ)(ai)

≥Ni(tl)Qs∗(al)−
tl∑

τ=1

Qs(τ)(ai)−Qs∗(al), (1)

where the last step follows from that tl is the last time step with ρ(tl) ≥ Qs∗(al). Summing up for i ≥ l + 1, we have

2B

n∑
i=l+1

√
αNi(tl) log T ≥

n∑
i=l+1

Qs∗(al)Ni(tl)−
n∑

i=l+1

tl∑
τ=1

Qs(τ)(ai)− nQs∗(al).

Notice that for arms ai with i ≤ l, we have
∑l

i=1 Qs∗(ai)Ni(tl) −
∑l

i=1

∑tl
τ=1 Qs(τ)(ai) ≤ 0 as Qs(τ)(ai) ≥ Qs∗(ai)

for all τ and i ≤ l, by Assumption 1. Therefore we have

2B

n∑
i=l+1

√
αNi(tl) log T ≥

l∑
i=1

Qs∗(ai)Ni(tl) +

n∑
i>l

Qs∗(al)Ni(tl)−
n∑

i=1

tl∑
τ=1

Qs(τ)(ai)− nQs∗(al).

For the first two terms on the right side, we have
∑l

i=1 Qs∗(ai)Ni(tl) =
∑l

i=1 Qs∗(ai)tl −
∑l

i=1 Qs∗(ai) (tl −Ni(tl))

and
∑

i>l Qs∗(al)Ni(tl) = Qs∗(al)
[
(k − l)tl +

∑l
i=1 (tl −Ni(tl))

]
. Therefore, we have

2B

n∑
i=l+1

√
αNi(tl) log T ≥

l∑
i=1

Qs∗(ai)tl + (k − l)Qs∗(al)tl −
n∑

i=1

tl∑
τ=1

Qs(τ)(ai)−
l−1∑
i=1

δil (tl −Ni(tl))− nQs∗(al)

≥
l∑

i=1

Qs∗(ai)tl + (k − l)Qs∗(al)tl −
n∑

i=1

tl∑
τ=1

Qs(τ)(ai)−
l−1∑
i=1

δil (ti − t′i)− nQs∗(al).

Recall that t′i is the number of optimal set played before ti. Combined with Lemma 12, which states that ai is always played
after ti, the second inequality above follows from tl −Ni(tl) = ti −Ni(ti) ≤ ti − t′i. The first inequality in Lemma 13
follows from

2B

n∑
i=l+1

√
αNi(tl) log T ≤ B

√√√√4n

n∑
i=l+1

αNi(tl) log T ≤ B

√
4αkn

(
tl −

l

k
t′l

)
log T .

14
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Proof of the second inequality. We reuse the following inequality that we proved at Equation (1), for all i ∈ [n] and all
l ∈ [k], we have:

2B
√
αNi(tl) log T ≥ Ni(tl)Qs∗(al)−

tl∑
τ=1

Qs(τ)(ai)−Qs∗(al).

Now, instead of summing over i ≥ l + 1, we sum over i > k and have

n∑
i=k+1

2B
√

αNi(tl) log T ≥
n∑

i=k+1

Ni(tl)Qs∗(al)−
n∑

i=k+1

tl∑
τ=1

Qs(τ)(ai)− nQs∗(al).

Notice that for arms ai with i ≤ k, we have
∑k

i=1 Qs∗(ai)Ni(tl) −
∑k

i=1

∑tl
τ=1 Qs(τ)(ai) ≤ 0 as Qs(τ)(ai) ≥ Qs∗(ai)

for all τ and i ≤ k, by Assumption 1. Therefore we have

n∑
i=k+1

2B
√
αNi(tl) log T ≥

n∑
i=k+1

Ni(tl)Qs∗(al) +

k∑
i=1

Qs∗(ai)Ni(tl)−
n∑

i=1

tl∑
τ=1

Qs(τ)(ai)− nQs∗(al).

The first inequality in Lemma 13 follows by

2B

n∑
i=k+1

√
αNi(tl) log T ≤ B

√√√√4n

n∑
i=k+1

αNi(tl) log T ≤ B
√
4αkn (tl − t′l) log T .

This completes the proof.

Recall that we assumed a1, · · · , ak all belong to s∗, with Qs∗(a1) ≥ Qs∗(a2) ≥ · · · ≥ Qs∗(ak). Recall δij = Qs∗(ai)−
Qs∗(aj) and ∆l =

∑k
i=l δli.

Lemma 14. Let σij =
4δij(∆j+ϵ)
(∆i+ϵ)2 , we have

k∑
j=i

σij ≤ 2, ∀i ≤ k, ∀ϵ ≥ 0.

Proof. Expanding the summation, we have

k∑
j=i

σij =

k∑
j=i

4δij(∆j + ϵ)

(∆i + ϵ)
2 = 4

k∑
j=i

δij
∆i + ϵ

 k∑
m=j

δjm
∆i + ϵ

+
ϵ

∆i + ϵ

 .

Note that

k∑
m=j

δjm +

j∑
m=i

δim + ϵ ≤ ∆i + ϵ =⇒
k∑

m=j

δjm
∆i + ϵ

+
ϵ

∆i + ϵ
≤ 1−

j∑
m=i

δim
∆i + ϵ

.

For brevity, let xm = δim
∆i+ϵ , we have

∑k
m=i xm ≤ 1 and

k∑
j=i

σij ≤ 4

k∑
j=i

xj(1−
j∑

m=i

xm) ≤ 4

∫ 1

0

(1− x)dx ≤ 2.

This completes the proof.

Follow the definition of σij =
4δij(∆j+ϵ)
(∆i+ϵ)2 in Lemma 14. We have the following result.

Lemma 15. For any 1 ≤ i < j ≤ k, define function f(i, j) = 0.4σij +
∑j−1

m=i+1 0.4σimf(m, j), we have

15
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1. f(i, j) = 0.4σij +
∑j−1

m=i+1 0.4f(i,m)σmj , ∀1 ≤ i < j ≤ k

2. f(i, j) ≤ 1, ∀1 ≤ i < j ≤ k

Proof. We first prove the first part. Let Π(i, j) be the power set of {i, i+ 1, · · · , j − 1, j}. Let Γ(i, j) =
{x|x ∈ Π(i, j), i ∈ x, j ∈ x}. Further, for x ∈ Γ(i, j)defining

g(x) = σx1x2
· σx2x3

· · ·σx|x|−1x|x| .

For example, for x = {2, 3, 5, 7}, we have g(x) = σ23 · σ35 · σ57.

We first show by induction that f(i, j) =
∑

x∈Γ(i,j) 0.4
|x|−1g(x). For base case j = i+ 1, we have f(i, j) = 0.4σij . Now

suppose f(i, j) =
∑

x∈Γ(i,j) 0.4
|x|−1g(x) holds for j − i ≤ c, we proceed to prove it holds for j − i = c+ 1.

Take j = i+ c+ 1, we have

f(i, j) = 0.4σij +

j−1∑
m=i+1

0.4σimf(mj)

= 0.4σij +

j−1∑
m=i+1

0.4σim

∑
x∈Γ(m,j)

0.4|x|−1g(x)


= 0.4σij +

j−1∑
m=i+1

∑
x∈Γ(m,j)

0.4|x|σimg(x)

=
∑

x∈Γ(i,j)

0.4|x|−1g(x),

where the last steps holds as a element x belongs to Γ(i, j) if and only if x is one of the following two cases:

1. x = {i, j},

2. x = {i,m, · · · , j} for some m ∈ [i+ 1, j − 1], and {m, · · · , j} ∈ Γ (m, j) by definition.

Therefore, we conclude via induction that

f(i, j) =
∑

x∈Γ(i,j)

0.4|x|−1g(x). (2)

Further, Equation (2) implies the first equation in Lemma 15, since a element x belongs to Γ(i, j) if and only if x is one of
the following two cases:

1. x = {i, j},

2. x = {i, · · · ,m, j} for some m ∈ [i+ 1, j − 1], and {i, · · · ,m} ∈ Γ (i,m) by definition.

For the second part of the proof, we prove by induction. For the base case j − i = 1, we have f(i, j) = 0.4σij ≤
0.4×4×0.5 ≤ 1. Now, suppose that the inequality holds for any i, j with j− i = c, then for any i, j ≤ k with j− i = c+1,
we have

f(i, j) ≤ 0.4σij +

j−1∑
m=i+1

0.4σim = 0.4

j∑
m=i+1

σim ≤ 0.4

k∑
m=i

σim ≤ 0.8.

The last inequality follows from Lemma 14, which states
∑k

m=i σim ≤ 2.

16
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D. Proof for Section 4
D.1. Proof of Lemma 5

Proof. The rest of the proof conditions on the event that the inequality in Lemma 9 holds (and therefore the inequality in
Corollary 10 holds), which happens with probability at least 1− 2

T .

By Corollary 10, we have

UCBi(t) ≥
∑t

τ=1 Qs(τ)(ai)

Ni(t)
,

for all ai and all t ∈ [T ]. By Assumption 1, we have that Qs(ai) ≥ Qs∗(ai) for all ai ∈ s∗ and all s containing ai. Therefore∑t
τ=1 Qs(τ)(ai)

Ni(t)
≥ Qs∗(ai). This completes the proof that with probability at least 1 − 2

T , we have UCBi(t) ≥ Qs∗(ai)

simultaneously for all ai ∈ s∗ and t ∈ [T ].

D.2. Proof of Lemma 7

Proof. The rest of the proof conditions on the event that the inequality in Lemma 9 holds (and therefore the inequalities in
Corollary 11 and lemmas 12 and 13 hold), which happens with probability at least 1− 2

T .

Define δij = Qs∗(ai)−Qs∗(aj), ∆l =
∑k

i=l δli. Define tl to be the last time step with ρ(tl) ≥ Qs∗(al). Denote t′l to be
the number of times s(t) = s∗ for t ≤ tl. Note that if ρ(T ) ≥ Qs∗(al), then tl = T by definition.

Case I: ∆l ≥ ϵ
10 .

By the first inequality of Lemma 13, we have

B

√
4αkn

(
tl −

l

k
t′l

)
log T ≥

l∑
i=1

Qs∗(ai)tl + (k − l)Qs∗(al)tl −
n∑

i=1

tl∑
τ=1

Qs(τ)(ai)−
l−1∑
i=1

δil(ti − t′i)− nQs∗(al).

Note that

l∑
i=1

Qs∗(ai) + (k − l)Qs∗(al)−
k∑

i=1

Qs∗(ai) =

k∑
i=l

δli = ∆l.

By the fact
∑k

i=1 Qs∗(ai)−
∑n

i=1 Qs(t)(ai) ≥ ϵ for all suboptimal set s(t), we have

B

√
4αkn

(
tl −

l

k
t′l

)
log T ≥ ∆ltl + ϵ (tl − t′l)−

l−1∑
i=1

δil (ti − t′i)− nQs∗(al)

≥ (∆l + ϵ)

(
tl −

l

k
t′l

)
− ϵ(k − l)−∆ll

k
t′l −

l−1∑
i=1

δil(ti − t′i)− nQs∗(al). (3)

Next, we prove by mathematical induction that (ti − t′i) ≤
(
3.08 + 10

∑i−1
j=1 f(j, i)

)
4αB2kn log T

(∆i+ϵ)2
, where the function

f(i, j) is defined in Lemma 15. For notation simplicity, we write ti − t′i in the following form

ti − t′i ≤ ci
4αB2kn log T

(∆i + ϵ)
2 ,

and proceed to bound ci. With the new convention, we can rewrite Equation (3) as

B

√
4αkn

(
tl −

l

k
t′l

)
log T ≥ (∆l + ϵ)

(
tl −

l

k
t′l

)
− ϵ(k − l)−∆ll

k
t′l −

l−1∑
i=1

δilci
4αB2kn log T

(∆i + ϵ)
2 − nQs∗(al). (4)

17
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For log T ≥ 2.5, with the fact k ≥ ∆l + ϵ, 1 ≥ Qs∗(al), α ≥ 2, we have 4n(∆l + ϵ)Qs∗(al) ≤ 0.8αkn log T and therefore

solving Equation (4) for the bound for
√
tl − l

k t
′
l, we have

√
tl −

l

k
t′l ≤

1

2

1 +

√√√√1.2 +

l−1∑
i=1

4δil (∆l + ϵ)

(∆i + ϵ)
2 ci +

4 (∆l + ϵ) ϵ(k−l)−∆ll
k

4αB2kn log T
t′l

 B
√
4αkn log T

∆l + ϵ
.

Further, define σil =
4δil(∆l+ϵ)

(∆i+ϵ)2
, we have

√
tl −

l

k
t′l ≤

1

2

1 +

√√√√1.2 +

l−1∑
i=1

σilci +
4 (∆l + ϵ) ϵ(k−l)−∆ll

k

4αB2kn log T
t′l

 B
√
4αkn log T

∆l + ϵ
.

By the fact (1 + a)2 ≤ 1.1a2 + 11 for any real number a, we have

tl −
l

k
t′l ≤

1

4

(
11 + 1.32 + 1.1

l−1∑
i=1

σilci

)
4αB2kn log T

(∆l + ϵ)
2 + 1.1

ϵ(k − l)−∆ll

k (∆l + ϵ)
t′l.

Since ∆l ≥ ϵ
10 , we have 1.1ϵk−1.1(∆l+ϵ)l

(∆l+ϵ)k ≤ (∆l+ϵ)k−(∆l+ϵ)l
(∆l+ϵ)k = k−l

k . Therefore we have

tl −
l

k
t′l ≤

(
3.08 + 0.275

l−1∑
i=1

σilci

)
4αB2kn log T

(∆l + ϵ)
2 +

k − l

k
t′l

=⇒ tl − t′l ≤

(
3.08 + 0.275

l−1∑
i=1

σilci

)
4αB2kn log T

(∆l + ϵ)
2 .

Plug in the convention of cl, we have

cl ≤ 3.08 + 0.275

l−1∑
i=1

σilci.

Now we proceed to show ci ≤ 3.08 + 10
∑i−1

j=1 f(j, i) by induction. For base case i = 1, 2, we have

c1 ≤ 3.08, c2 ≤ 3.08 + 0.275σ12c1 ≤ 3.08 + σ12 ≤ 0.308 + 10f(1, 2).

Next, suppose ci ≤ 3.08 + 10
∑i−1

j=1 f(j, i) holds for all i ≤ l − 1, for i = l we have

cl ≤ 3.08 + 0.275

l−1∑
i=1

σilci ≤ 3.08 + 0.275

l−1∑
i=1

3.08 + 10

i−1∑
j=1

f(j, i)

σil

≤ 3.08 +

l−1∑
i=1

2.75σil + 2.75

i−1∑
j=1

f(j, i)σil


≤ 3.08 +

l−1∑
j=1

l−1∑
i=j+1

2.75f(j, i)σil +

l−1∑
i=1

2.75σil

≤ 3.08 +

l−1∑
j=1

2.75σjl +

l−1∑
i=j+1

2.75f(j, i)σil


≤ 3.08 + 10

l−1∑
j=1

f(j, l).
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The last inequality follows from the first equation in Lemma 15: f(i, j) = 0.4σij +
∑j−1

m=i+1 0.4f(i,m)σmj . This
completes induction.

Combining with the second inequality in Lemma 15 which shows that f(i, l) ≤ 1,∀i < l ≤ k, we have cl ≤ 10l. It
therefore implies that tl − t′l ≤

40αB2lkn log T
(∆l+ϵ)2 . This completes the proof of the first case in Lemma 7.

Case II: ∆l <
ϵ
10 .

Denote l′ to be the largest i with ∆i ≥ ϵ/10, and let l′ = 0 if ∆i < ϵ/10 for all i ∈ [k]. By definition, we know l > l′.
Applying the second inequality in Lemma 13, we have that

2B
√
αkn (tl − t′l) log T ≥

n∑
i=k+1

Qs∗(al)Ni(tl) +

k∑
i=1

Qs∗(ai)Ni(tl)−
n∑

i=1

tl∑
τ=1

Qs(τ)(ai)− nQs∗(al)

≥
k∑

i=1

Qs∗(ai)tl −
l−1∑
i=1

(Qs∗(ai)−Qs∗(al)) (tl −Ni(tl))−
n∑

i=1

tl∑
τ=1

Qs(τ)(ai)− nQs∗(al)

≥ ϵ (tl − t′l)−
l−1∑
i=1

δil(tl −Ni(tl))− nQs∗(al)

≥ ϵ (tl − t′l)−
l−1∑
i=1

δil(ti − t′i)− nQs∗(al). (5)

Recall that t′i is the number of optimal set played before ti. Combined with Lemma 12, which states that ai is always played
after ti, the last inequality above follows from tl −Ni(tl) = ti −Ni(ti) ≤ ti − t′i.

Next, we prove by mathematical induction that (ti − t′i) ≤
(
3.08 + 10

∑i−1
j=1 f(j, i)

)
4αB2kn log T

ϵ2 for all i > l′, where the
function f(i, j) is defined in Lemma 15. For notation simplicity, we write ti − t′i for i > l′ in the following form

ti − t′i ≤ di
4αB2kn log T

ϵ2
,

and proceed to bound di. With this convention, we can rewrite Equation (5) as

2B
√

αkn (tl − t′l) log T ≥ ϵ (tl − t′l)−
l′∑

i=1

δilci
4αB2kn log T

(∆i + ϵ)
2 −

l−1∑
i=l′+1

δildi
4αB2kn log T

ϵ2
− nQs∗(al)

For log T ≥ 2.5, with the fact k ≥ ∆l + ϵ, 1 ≥ Qs∗(al), α ≥ 2, we have 4n(∆l + ϵ)Qs∗(al) ≤ 0.8αkn log T and therefore
solving Equation (5) for the bound for

√
tl − t′l, we have

√
tl − t′l ≤

B
√
4αkn log T

(
1 +

√
1.2 +

∑l′

i=1
4δilϵ

(∆i+ϵ)2
ci +

∑l−1
i=l′+1

4δilϵ
ϵ2 di

)
2ϵ

≤
B
√
4αkn log T

(
1 +

√
1.2 +

∑l′

i=1
4δil(∆l+ϵ)

(∆i+ϵ)2
ci + 1.21

∑l−1
i=l′+1

4δil(∆i+ϵ)

(∆i+ϵ)2
di

)
2ϵ

.

The second inequality follows from (∆i+ϵ)2

ϵ2 ≤ 1.21 as ∆i <
ϵ
10 for all i > l′. Define σil =

4δil(∆l+ϵ)

(∆i+ϵ)2
, with the convention

of dl, we have

√
dl ≤

1

2

1 +

√√√√1.2 +

l′∑
i=1

σilci + 1.21

l−1∑
i=l′+1

σildi

 .
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Again use the fact that (1 + a)2 ≤ 11 + 1.1a2, we have

dl ≤
1

4

11 + 1.32 + 1.1

l′∑
i=1

σilci + 1.331

l−1∑
i=l′+1

σildi


≤ 3.08 + 0.275

l′∑
i=1

σilci + 0.34

l−1∑
i=l′+1

σildi.

We next prove by induction that di ≤ 3.08 + 10
∑i−1

j=1 f(j, i) for all i > l′. For the base case, i = l′ + 1, we immediately
have di ≤ 3.08 + 0.275

∑i−1
j=1 σjicj = 3.08 + 10

∑i−1
j=1 f(j, i), which follows from the proof in Case I.

Next, assuming that di ≤ 3.08 + 10
∑i−1

j=1 f(j, i) holds for i ≤ l − 1, then for i = l we have

dl ≤ 3.08 + 0.275

l′∑
i=1

σilci + 0.34

l−1∑
i=l′+1

σildi

≤ 3.08 + 0.275

l′∑
i=1

3.08 + 10

i−1∑
j=1

f(j, i)

σil + 0.34

l−1∑
i=l′+1

3.08 + 10

i−1∑
j=1

f(j, i)

σil

≤ 3.08 +

l−1∑
i=1

3.4σil + 3.4

i−1∑
j=1

f(j, i)σil


≤ 3.08 +

l−1∑
j=1

l−1∑
i=j+1

3.4f(j, i)σil +

l−1∑
i=1

3.4σil

≤ 3.08 +

l−1∑
j=1

3.4σjl +

l−1∑
i=j+1

3.4f(j, i)σil


≤ 3.08 + 10

l−1∑
j=1

f(j, l).

The last inequality follows from the first equation in Lemma 15: f(i, j) = 0.4σij +
∑j−1

m=i+1 0.4f(i,m)σmj . This
completes induction.

Combining with the second inequality in Lemma 15 which shows that f(i, l) ≤ 1,∀i < l ≤ k, we have dl ≤ 10l. It
therefore implies that tl − t′l ≤

40αB2lkn log T
ϵ2 . This completes the proof of the second case in Lemma 7.

D.3. Proof of Lemma 8

Proof. The rest of the proof conditions on the event that the inequality in Lemma 9 holds (and therefore inequalities in
Lemmas 5 and 13 hold), which happens with probability at least 1− 2

T .

Recall that for al ∈ s∗, tl is the last time step with ρ(tl) ≥ Qs∗(al) and t′l is the number of times s(t) = s∗ for t ≤ tl. From
Lemma 5, we know that the arms ai ∈ s∗ all have UCBi(t) ≥ Qs∗(ak) for all t ∈ [T ]. Therefore, we have ρ′(t) ≥ Qs∗(ak)
for all t and thus ρ(T ) ≥ Qs∗(ak). It implies that tk = T and R(T ) = R(tk). Plug in the first inequality in Lemma 13 with
l = k, we have

B
√

4αkn (tk − t′k) log T ≥
k∑

i=1

Qs∗(ai)tk −
n∑

i=1

tk∑
τ=1

Qs(τ)(ai)−
k−1∑
i=1

δik(ti − t′i)− nQs∗(ak).
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Note that R(tk) =
∑k

i=1 Qs∗(ai)tk −
∑n

i=1

∑tk
τ=1 Qs(τ)(ai), rearranging the terms, we have

R(T ) = R(tk) ≤ B
√
4αkn (tk − t′k) log T +

k−1∑
l=1

δlk (tl − t′l) + nQs∗(ak).

This completes the proof.

D.4. Proof of Theorem 3

Now we are ready to prove Theorem 3.

Proof. We first consider when the inequality in Lemma 9 does not hold for some t and arm ai. Since this happens with
probability at most 2/T and the regret is trivially bounded by T . Therefore it induces at most 2 regret in expectation.

The rest of the proof conditions on the event that the inequality in Lemma 9 holds (and therefore the inequalities in Lemmas 7
and 8 hold), which happens with probability at least 1− 2

T .

We first prove the gap-dependent regret bound. Combining Lemmas 7 and 8, we have

R(T ) ≤2B
√
αkn(tk − t′k) log T +

k−1∑
l=1

δlk (tl − t′l) + nQs∗(ak)

≤14αB2k
3
2n log T

ϵ
+

k−1∑
l=1

δlk (tl − t′l) + nQs∗(ak)

(a)

≤ 14αB2k
3
2n log T

ϵ
+

k−1∑
l=1

40αB2lkn log T

ϵ
+ n

≤35αB2k3n log T

ϵ
.

Recall that δik = Qs∗(ai)−Qs∗(ak), and ∆l =
∑k

i=l δli. The inequality (a) used the fact that

δlk · (tl − t′l) ≤ δlk · 40αB
2lkn log T

(∆l + ϵ)2
≤ 40αB2lkn log T

ϵ
, ∀∆l ≥ ϵ/10; and

δlk · (tl − t′l) ≤ δlk · 40αB
2lkn log T

ϵ2
≤ 40αB2lkn log T

ϵ
, ∀∆l < ϵ/10.

This completes the proof of the gap-dependent regret bound O
(

B2k3n log T
ϵ

)
.

For the gap-independent part, recall that δik = Qs∗(ai)−Qs∗(ak), and ∆l =
∑k

i=l δli.

If ∆1 + ϵ < 10kB
√

αn log T
T , from Lemma 8, we have

R(T ) ≤ 2B
√
αknT log T +

k∑
i=1

δikT + n

≤ 2B
√
αknT log T +

k∑
i=1

∆1T + n = O
(
Bk2

√
nT log T

)
,

where we used the fact that tl − t′l ≤ tl ≤ T for all l ∈ [k], and δik ≤ ∆1 for all i ∈ [k].

On the other hand, if ∆1 + ϵ < 10kB
√

αn log T
T , let m denote the largest i ∈ [1, k] such that ∆i + ϵ ≥ 10kB

√
αn log T

T . To
invoke Lemma 7, we need to discuss the relationship between ∆m and ϵ/10
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(a) If ∆m ≥ ϵ/10, combining Lemmas 7 and 8, we have

R(T ) ≤ 2B
√
αknT log T +

m∑
l=1

40αB2lkn log T

∆m + ϵ
+

k∑
i=m+1

δikT + n

≤ 2B
√
αknT log T +

20αB2k3n log T

∆m + ϵ
+

k∑
i=m+1

δikT + n.

If m = k, we do not have the third term. Otherwise, by definition of ∆m+1, we have δik ≤ ∆m+1,∀i ≥ m+ 1. Therefore,
we have

R(t) ≤ 2B
√
αknT log T +

20αB2k3n log T

∆m + ϵ
+ (k −m)∆m+1T + n.

With ∆m + ϵ ≥ 10kB
√

αn log T
T ≥ ∆m+1 + ϵ and the fact that T > n, we have the O(Bk2

√
nT log T ) gap-independent

regret bound.

(b) If ∆m < ϵ/10, ∆m + ϵ ≥ 10kB
√

αn log T
T implies that ϵ ≥ 9kB

√
αn log T

T . Combining Lemmas 7 and 8, we have

R(T ) ≤ 2B
√
αknT log T +

m∑
l=1

40αB2lkn log T

ϵ
+

k∑
i=m+1

δikT + n

≤ 2B
√
αknT log T +

20αB2k3n log T

ϵ
+

k∑
i=m+1

δikT + n.

If m = k, we do not have the third term. Otherwise, by definition of ∆m+1, we have δik ≤ ∆m+1,∀i ≥ m+ 1. Therefore,
we have

R(t) ≤ 2B
√
αknT log T +

20αB2k3n log T

ϵ
+ (k −m)∆m+1T + n.

With ϵ ≥ 9kB
√

αn log T
T and 10kB

√
αn log T

T ≥ ∆m+1 + ϵ and the fact that T > n, we have the O(Bk2
√
nT log T )

gap-independent regret bound.

Combining all the cases completes the proof.

E. Experiment Setup
E.1. Multinomial Logit

In this environment, the reward is generated according to a multinomial logit model

Qs(t)(ai) =
vi

1 +
∑

ai∈s(t) vi
, Qs(t)(a0) =

1

1 +
∑

ai∈s(t) vi
.

where vi is the value associated with each arm ai, determining the reward probability. In this experiment, we set vi =
1− 0.04i with i ∈ [20]. The size of set is set to k = 10, and the optimal set is s∗ is composed by arms from a1 to a10. The
regret of set s(t) is given by

reg(s(t)) =
1

1 +
∑

ai∈s(t) vi
− 1

1 +
∑

ai∈s∗ vi
.

E.2. Random Utility Model

In this environment, for an set s(t) at time step t, each arm ai ∈ s(t) will independently draw a Gaussian distributed random
variable Ui ∼ N (µi, 1), where µi is the mean associated with each arm ai. Along with that a0 will draw a U0 ∼ N (2, 1).
The arm ai (including a0) with highest Ui will receive reward. Thus we have the probability of ai getting reward as

Qs(t)(ai) = P(Ui = max
aj∈s(t)∪{a0}

Uj).
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Here, we set µi = 1− 0.04i with i ∈ [20]. The size of set is set to k = 5, and the optimal set s∗ is composed by the arms
from a1 to a5. For the convenience of computation, the regret of set s(t) is defined slightly different as

reg(s(t)) =
∑
ai∈s∗

µi −
∑

ai∈s(t)

µi.

Once s(t) recovers the optimal set s∗, which maximizes the probability of s(t) receiving reward, we will have this regret
reg(s(t)) = 0.

E.3. Preference Matrix

In this environment, the probability of one arm ai getting reward is fully specified by a preference matrix. For ease of
representation, we set the number of arms to n = 10 and the size of set to k = 2. Th total number of sets is 45, much lesser
than the previous two environments. However, with a specially designed preference matrix (including the loop in preference,
etc), the environment turns out to be the hardest.

We set M to be the preference matrix with Mi,j = Q{ai,aj}(ai)−Q{ai,aj}(aj). We set the optimal set to be s∗ = {a1, a2}
with Q{a1,a2}(a1)+Q{a1,a2}(a2) = 0.92. For all other sets s which are sub-optimal, we set Q{ai,aj}(ai)+Q{ai,aj}(aj) =
0.9. The preference matrix M is given in Table 2.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
a1 – 0.02 0.05 0.1 0.1 0.2 0.25 0.3 0.3 0.3
a2 -0.02 – 0.05 0.1 0.1 0.2 0.25 0.3 0.3 0.3
a3 -0.05 -0.05 – 0.45 0.45 0.45 0.45 0.45 0.45 0.45
a4 -0.1 -0.1 -0.45 – -0.3 0.3 0 0 0 0
a5 -0.1 -0.1 -0.45 0.3 – -0.3 0 0 0 0
a6 -0.2 -0.2 -0.45 -0.3 0.3 – 0 0 0 0
a7 -0.25 -0.25 -0.45 0 0 0 – 0 0 0
a8 -0.3 -0.3 -0.45 0 0 0 0 – 0 0
a9 -0.3 -0.3 -0.45 0 0 0 0 0 – 0
a10 -0.3 -0.3 -0.45 0 0 0 0 0 0 –

Table 2. Preference Matrix M

We can see that when a3 pairs with any other sub-optimal arm, it will have a higher chance of getting reward than a1 and a2.
It makes a3 the seemingly best single arm. Also note that when a4 pairs with a5, a5 will have a higher chance of getting
reward. Similarly, a6 will win over a5 and a4 will win over a6. The preference therefore forms a loop among a4, a5, a6.

The regret of {ai, aj} is given by

reg({ai, aj}) = Q{a1,a2}(a1) +Q{a1,a2}(a2)−Q{ai,aj}(ai)−Q{ai,aj}(aj).

E.4. Random Weak Optimal Set Consistency

In this environment, we randomly generate the environment with Algorithm 2 that satisfies the Assumption 1.

By construction, the environment satisfies Assumption 1. Moreover, as we randomly sample the feedback for each set
randomly, it’s not necessary for the generated environment to satisfy more stronger Assumption, e.g. the strict preference
order. The regret of set s(t) is given by

reg(s(t)) =
∑

a∈s(t)

Qs(t)(a)−
∑

a∗∈s∗

Qs∗(a
∗).
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Algorithm 2 GENERATING ENVIRONMENT SATISFIES ASSUMPTION 1.
1: Input: Number of Arms n, set Size k.
2: Set set s∗ = {1, 2, · · · , k} be the optimal set. Randomly Sample Qs∗(a) ∼ Uniform(0, 1

k ). The rewards are binary
reward, with expectation generated as following:

3: for set s ̸= s∗ do
4: while

∑
a∈s Qs(a) >

∑
a∗∈s∗ Qs∗(a

∗) do
5: for a ∈ s do
6: if a ∈ s∗ then
7: Sample Qs(a) ∼ Uniform(Qs∗(a),

1
k ).

8: else
9: Sample Qs(a) ∼ Uniform(0, 1

k ).
10: end if
11: end for
12: end while
13: end for
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