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Abstract
Large Language models (LLMs) have shown
remarkable success in assisting robot learning
tasks, i.e., complex household planning. How-
ever, the performance of pretrained LLMs heav-
ily relies on domain-specific templated text data,
which may be infeasible in real-world robot learn-
ing tasks with image-based observations. More-
over, existing LLMs with text inputs lack the ca-
pability to evolve with non-expert interactions
with environments. In this work, we introduce a
novel learning paradigm that generates robots’ ex-
ecutable actions in the form of text, derived solely
from visual observations, using language-based
summarization of these observations as the con-
necting bridge between both domains. Our pro-
posed paradigm stands apart from previous works,
which utilized either language instructions or a
combination of language and visual data as inputs.
Moreover, our method does not require oracle
text summarization of the scene, eliminating the
need for human involvement in the learning loop,
which makes it more practical for real-world robot
learning tasks. Our proposed paradigm consists
of two modules: the SUM module, which inter-
prets the environment using visual observations
and produces a text summary of the scene, and the
APM module, which generates executable action
policies based on the natural language descrip-
tions provided by the SUM module. We demon-
strate that our proposed method can employ two
fine-tuning strategies, including imitation learning
and reinforcement learning approaches, to adapt
to the target testing tasks effectively. We con-
ducted extensive experiments involving various
SUM/APM model selections, environments, and
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tasks across 7 house layouts in the VirtualHome
environment. Our experimental results demon-
strate that our method surpasses existing base-
lines, confirming the effectiveness of this novel
learning paradigm.

1. Introduction
There has been a surge of interest in building Large Lan-
guage Models (LLMs) pretrained on large-scale datasets and
exploring LLMs’ capability in various downstream tasks.
LLMs start from the Transformer model (Vaswani et al.,
2017b) and are first developed to solve different natural lan-
guage processing (NLP) applications (Devlin et al., 2019;
Liu et al., 2019; Brown et al., 2020). Recently, LLMs also
show great potential for accelerating learning in many other
domains by generating learned embeddings as meaningful
representations for downstream tasks and encoding trans-
ferable knowledge in large pretraining datasets. Examples
include transferring the knowledge of LLM to, i.e., robotics
control (Liang et al., 2022; Ahn et al., 2022), multimodal
learning (Zeng et al., 2022; Zellers et al., 2021), decision-
making (Li et al., 2022b; Huang et al., 2022a), code genera-
tion (Fried et al., 2022), laws (Kaplan et al., 2020), computer
vision (CV) (Radford et al., 2021), and so on.

In this paper, we focus on the problem of facilitating robot
learning by having a LLM in the loop. The robot generates
actions according to its environment observations, which
are, in general, sensory information in the format of images,
point clouds, or kinematic states. We identify one key chal-
lenge in massively deploying LLMs to assist robots is that
LLMs lack the capability to understand such non-text-based
environment observations. To solve this challenge, Liang
et al. (2022) utilize rule-based perception APIs to trans-
form image-based observations into text formats, which
then serve as inputs to the LLM. We instead propose to
integrate the multimodal learning paradigm to transform im-
ages into texts, which allows more principled and efficient
transfer to novel robot learning tasks than rule-based APIs.
Another key challenge is the widely-existing large distri-
bution shifts between the training tasks of large pretrained
models and testing tasks in the domain of robot learning. To
close the domain gap, Li et al. (2022b) adapt the pretrianed
LLM to downstream tasks via finetuning with observations
converted into text descriptions. In the presence of realis-
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tic visual observations, it is still being determined what is
an appropriate method to co-adapt pretrained foundation
models for testing tasks in robot learning.

To address the above challenges, we propose a new visual-
based robot learning paradigm that takes advantage of em-
bedded knowledge in both multimodal models and LLMs.
To align different modalities in the visual observations and
text-based actions, we consider language as the bridge infor-
mation. We build a scene-understanding model (SUM) with
a pretrained image captioning model to grant the robot the
ability to describe the surrounding environment with natural
language. We then build an action prediction model (APM)
with a LLM to generate execution actions according to the
scene caption in the format of natural language. To adapt
per-tained models in SUM and APM to downstream robot
learning tasks, we propose to finetune the multimodal model
in SUM with pre-collected domain-specific image-caption
pairs and the language model in APM with correspond-
ing language-action pairs. Besides finetuning with expert
demonstrations, we further propose a finetuning paradigm
of APM based on the sparse environment feedbacks to en-
dow APM’s capability to evolute with non-expert data. An
illustration of the proposed framework is Figure 1.

Our contributions are summarised as follows:
• We introduce a novel robot learning paradigm with

LLM in the loop that handles multiple modalities of
visual observations and text-based actions in a princi-
pled manner. We bridge both modalities with natural
language generated by a pretrained multimodal model.

• To adapt to target testing tasks, we propose two fine-
tuning strategies, including imitation learning and re-
inforcement learning approaches. We collect a new
expert dataset for imitation learning-based finetuning.

• We test the adaptation performance of multiple models
of SUM and APM in seven house layouts in the Vir-
tualHome environment. Our experiments demonstrate
that our proposed paradigm shows promising results.

2. Related Work
Language Models in Robot Learning Recently, several
works have successfully combined LLMs with robot learn-
ing by taking advantage of the knowledge learned by LLMs
i.e., reasoning (Liang et al., 2022; Zeng et al., 2022; Zellers
et al., 2021), planning (Shah et al., 2022; Huang et al.,
2022b; Kant et al., 2022; Li et al., 2022b; Huang et al.,
2022a), manipulation (Shafiullah et al., 2022; Jiang et al.,
2022; Shridhar et al., 2022; Bucker et al., 2022; Ren et al.,
2022; Tam et al., 2022; Khandelwal et al., 2022; Shridhar
et al., 2021; Xu et al., 2022; 2023), and navigation (Lin
et al., 2022; Parisi et al., 2022; Gadre et al., 2022; Hong
et al., 2021; Majumdar et al., 2020), which demonstrated
the feasibility of using LLM to assist robot learning.

Visual Feedback in Robot Learning Visual feedback is
commonly used in robot learning. Gothoskar et al. (2020)
learned a generative model from actions to image observa-
tions of features to control a robot from visual feedback.
Ma et al. (2022) proposed a self-supervised pretrained vi-
sual representation model which is capable of generating
dense and smooth reward functions for unseen robotic tasks.
Strokina et al. (2022) reviewed the methods of reward es-
timation and visual representations used in learning-based
approaches for robotics applications. Mohtasib et al. (2021)
studied the performance of dense, sparse, visually dense,
and visually sparse rewards in deep RL.

Pre-training and Fine-tuning of Language Models
Over the past few years, fine-tuning (Howard & Ruder,
2018) has superseded the use of feature extraction of pre-
trained embeddings (Peters et al., 2018) while pretrained
language models are favored over models trained on many
tasks due to their increased sample efficiency and perfor-
mance (Ruder, 2021). The success of these methods has
led to the development of even larger models (Devlin et al.,
2019; Raffel et al., 2019). But those large models may not
perform well on data that is different from what they were
pretrained on. Under this case, fine-tuning pretrained con-
textual word embedding models to supervised downstream
tasks has become commonplace (Hendrycks et al., 2020;
Dodge et al., 2020). More related works can be found in
Appendix B.

3. Method
In this section, we first introduce our focused problem in
Section 3.1, which is generating a visual-based policy by
leveraging pretrained large models. We then introduce SUM,
which learns language descriptions of the surrounding en-
vironment in Section 3.2, and APM which predicts actions
based on SUM’s caption output in 3.3. To grant both SUM
and APM the capability of making the correct understanding
and decision in the target domain, we propose finetuning
algorithms in Section 3.2 and 3.3. Our code and data are
provided in the supplementary materials.

3.1. Problem Formulation

We consider a general and realistic robot learning task
where a robot agent receives a sequential visual observation
V = [v1, v2, ..., vt], where t is the timestep, and aims to
generate a sequence of actions A = [a1, a2, ..., at] based on
the pure visual observations V . Traditionally, the robot’s
policy is trained from scratch in the target tasks. Inspired by
the success of large pretrained models, we aim to explore
the benefit of utilizing pretrained LLMs and multimodal
models for general robot learning tasks, where only visual
observations are available as inputs. Given the prevailing
domain shift between the training domain of the pretrained
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Figure 1. The overall architecture of our approach, which includes a scene understanding module (SUM) and an action prediction module
(APM). The agent takes pure visual observations and encode the information as latent language, then the language is transferred to APM
for action generation. APM fine-tuned on VirtualHome can generate executable action plans directly.

models and the robot learning tasks, we are motivated to
develop a principled finetuning method.

3.2. SUM: Learning Scene Descriptions from Visual
Observations into Language

The goal of the SUM (scene understanding module) is to
transform visual observations into language descriptions
that contain an actionable trait to it. SUM shares similar
functionalities of visual captioning models, which aims to
automatically generate fluent and informative language de-
scriptions of an image (Ke et al., 2019). For the SUM to be
capable of providing scene descriptions from visual observa-
tions, it needs to distill representative and meaningful visual
representations from an image, then generate coherent and
intelligent language descriptions.

In our framework, we adopt models with image captioning
ability as our SUM. Generally, image captioning models
employ a visual understanding system and a language model
capable of generating meaningful and syntactically correct
captions (Stefanini et al., 2021). In a standard configuration,
the task can be defined as an image-to-sequence problem,
where the inputs are pixels, which will be encoded as one or
multiple feature vectors in the visual encoding step. Then
a language model will take the information to produce a
sequence of words or subwords decoded according to a
given vocabulary in a generative way.

With the development of self-attention (Vaswani et al.,
2017a), the visual features achieved remarkable perfor-
mance due to multimodal pretraining and early-fusion strate-
gies (Tan & Bansal, 2019; Lu et al., 2019; Li et al., 2020;
Zhou et al., 2019). As for language models, the goal is
to predict the probability of a given sequence of words oc-
curring in a sentence. As such, it is a crucial component
in image captioning, as it gives the ability to deal with
natural language as a stochastic process. Formally, given a
sequence of n words y1, . . . , yn, the language model compo-

nent of an image captioning algorithm assigns a probability
P (y1, y2, . . . , yn | X) to the sequence as:

P (y1, y2, . . . yn |X) =

n∏
i=1

P (yi | y1, y2, . . . , yi−1,X) (1)

where X represents the visual encoding on which the lan-
guage model is specifically conditioned. Notably, when pre-
dicting the next word given the previous ones, the language
model is autoregressive, which means that each predicted
word is conditioned on the previous ones. Additionally, the
language model usually decides when to stop generating
captions by outputting a special end-of-sequence token.

3.3. APM: Decoding Language Information into
Executable Action Plans

The goal of APM (action prediction module) is to transform
latent language information from the SUM output into exe-
cutable action plans. Since both latent language information
and executable action plans are sequential data, a LLM with
encoder-decoder architecture is a good option for APM in
our framework. In addition, a LLM pretrained on a vast
corpus of text already has adequate knowledge, which can
be fine-tuned on other tasks to improve learning efficiency.

A LLM with encoder-decoder architecture suits well for our
setting. The encoder is responsible for reading and under-
standing the input language information from SUM, which
is usually based on transformer architecture, and creates a
fixed-length vector representation, called the context vector.
The decoder then takes the context vector as input and gen-
erates the output, in our case, the executable action plans.
The decoder uses the context vector to guide its generation
of the output and make sure it is coherent and consistent
with the input information. However, due to the distribu-
tion change between the data that LLM was pretrained on
and the new task, the LLM needs to be fine-tuned on the
task-specific data to transfer the knowledge. The fine-tuning
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Algorithm 1 Fine-tuning SUM
Initialize pretrained SUM model
Load VirtualHome dataset for fine-tuning
for n in num epochs do

for Imaget and Captiont in batchn do
1. ˆCaptiont = SUM(Imaget)
2. LossXEt(θt) = LXE(Captiont,

ˆCaptiont)

3. θt ← θt − α∇θtL(Captiont,
ˆCaptiont)

end for
repeat

Steps 1 through 3
until max(num epochs) or convergence

end for

Algorithm 2 Fine-tuning APM with Imitation Learning
Initialize fine-tuned SUM and pretrained APM
Load VirtualHome dataset for fine-tuning
for n in num epochs do

for Imaget, Captiont Actiont in batchn do
1. ˆCaptiont = SUM(Imaget)
2. ˆActiont+1 = APM( ˆCaptiont,Actiont)

3. LossXEt(θt) = LXE(Actiont, ˆActiont+1)

4. θt ← θt − α∇θtLXE(Actiont, ˆActiont+1)
end for
repeat

Steps 1 through 3
until max(num epochs) or convergence

end for

strategies will be introduced in the following sections. For
our LLMs, we use well-adopted pretrained architectures,
including BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), and BART (Lewis et al., 2020), as both the encoder
and decoder. The goal of the LLM is to learn how to gen-
erate programmable, executable actions from the language
descriptions outputted by SUM.

3.4. Training Pipeline

The training pipeline contains two steps. We first fine-tune
SUM with the curated VirtualHome observations (More de-
tails about data collection are introduced in Section 4.2).
This fine-tuning step is to familiarize SUM with the types
of scenes present in the task-specific data. We present pseu-
docode to fine-tune the SUM in Algorithm 1.

In the second stage, we load the fine-tuned SUM and encode
the outputs as latent language embeddings. The embeddings
are then fed into the APM, which is then fine-tuned using
different fine-tuning loss objectives (supervised one or pol-
icy gradient, more details are introduced in Section 4), to
achieve the optimal policy with maximum rewards. The
pseudocode for finetuning APM with IL and REINFORCE
are in Algorithms 2 and 3, respectively.

Algorithm 3 Fine-tuning APM with REINFORCE
Initialize fine-tuned SUM, pretrained APM, and VirtualHome
environment (env)
Load VirtualHome dataset for fine-tuning
for n in num epochs do

Trajectoriest = [ ]
state = env.reset()
for Imaget, Captiont Actiont in batchn do

1. ˆCaptiont = SUM(Imaget)
2. ˆActiont = APM( ˆCaptiont,Actiont)

3. Trajectoriest.append( ˆActiont)
end for
sort(Trajectoriest) by Task ID
for i in range(len(Trajectoriest)) do

4. ˆActiont = sample action(Trajectoriest[i])
5. Rewardt = env.step(Actiont, ˆActiont)

6. Compute∇θt logP ( ˆActiont|Actiont)

7. θt ← θt + αr∇θt logP ( ˆActiont|Actiont)
end for
repeat

Steps 1 through 7
until max(num epochs) or convergence

end for

3.5. Fine-tuning APM with IL and RL

For LLM, the output word is sampled from a learned dis-
tribution over the vocabulary words. In the most simple
scenario, i.e. the greedy decoding mechanism, the word
with the highest probability is output. The main drawback
of this setting is that possible prediction errors quickly ac-
cumulate along the way. To alleviate this drawback, one
effective strategy is to use the beam search algorithm (Cho
et al., 2014; Koehn, 2007) that, instead of outputting the
word with maximum probability at each time step, main-
taining k sequence candidates and finally outputs the most
probable one. For the training or fine-tuning strategies, most
strategies are based on cross-entropy (CE) loss and masked
language model (MLM). But recently, RL-based learning
objective has also been explored, which allows optimizing
for captioning-specific non-differentiable metrics directly.
Imitation Learning with Cross-Entropy Loss The CE
loss aims to minimize the negative log-likelihood of the
current word given the previous ground-truth words at each
timestep. Given a sequence of target words y1:T , the loss is
formally defined as:

LXE(θ) = −
n∑

i=1

log (P (yi | y1:i−1,X)) (2)

where P is the probability distribution induced by LLM, yi
the ground-truth word at time i, y1:i−1 indicate the previous
ground-truth words, and X the visual encoding. The cross-
entropy loss is designed to operate at the word level and
optimize the probability of each word in the ground-truth
sequence without considering longer-range dependencies be-
tween generated words. The traditional training setting with
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cross-entropy also suffer from the exposure bias problem
(Ranzato et al., 2015) caused by the discrepancy between
the training data distribution as opposed to the distribution
of its own predicted words.

Reinforcement Learning with REINFORCE Given the
limitations of word-level training strategies observed when
using limited amounts of data, a significant improvement
was achieved by applying the RL approach. Under this
setting, the LLM is considered as an agent whose parameters
determine a policy. At each time step, the agent executes
the policy to choose an action, i.e. the prediction of the next
word in the generated sentence. Once the end-of-sequence
is reached, the agent receives a reward, and the aim of the
training is to optimize the agent parameters to maximize the
expected reward (Stefanini et al., 2021).

Similar to Ranzato et al. (2015), for our policy gradient
method, we use REINFORCE (Williams, 1992; Sutton et al.,
1999), which uses the full trajectory, making it a Monte-
Carlo method, to sample episodes to update the policy pa-
rameter. For fine-tuning LLMs using RL, we need to frame
the problem into an Agent-Environment setting where the
agent (policy) can interact with the environment to get the
reward for its actions. This reward is then used as feedback
to train the model. The mapping of the entities is from the
agent (policy), which is an LLM, and the environment (the
reward function, also named the model), which generates
rewards. The reward function consumes the input as well as
the output of the LLM to generate the reward. The reward
is then used in a loss function, and the policy is updated.
Formally, to compute the loss gradient, beam search and
greedy decoding are leveraged as follows:

∇θL(θ) = −
1

k

k∑
i=1

((
r
(
wi

)
− b

)
∇θ logP

(
wi

))
(3)

where wi is the i-th sentence in the beam or a sampled
collection, r(·) is the reward function, and b is the baseline,
computed as the reward of the sentence obtained via greedy
decoding (Rennie et al., 2016), or as the average reward
of the beam candidates (Cornia et al., 2019). Note that,
since it would be difficult for a random policy to improve in
an acceptable amount of time, the usual procedure entails
pretraining with cross-entropy or masked language model
first, and then fine-tuning stage with RL by employing a
sequence level metric as the reward. This ensures the initial
RL policy is more suitable than the random one.

4. Experiments
This section introduces the environment we used in the
experiments, the experimental settings, evaluations, and
results. We would like to answer the following questions
with experiments: (1) Can the proposed paradigm take pure

Figure 2. Top-down views of the seven different environments
from VirtualHome (Puig et al., 2018b).

visual observations to generate executable robot actions;
(2) What kinds of SUM are able to provide better scene
descriptions for robot learning; (3) What kinds of APM
show better action decoding ability in generating executable
actions; (4) What kinds of fine-tuning strategies show better
performance under this setting; (5) Can the model achieve
consistent performance across different environments?

4.1. Environments and Metrics

Environments We build the experiment environments
based on VirtualHome (Puig et al., 2018a; Liao et al., 2019),
a multi-agent, virtual platform for simulating daily house-
hold activities. (Puig et al., 2018b). Puig et al. (2018a)
provides a dataset of possible tasks in their respective envi-
ronments. Each task includes a natural language description
of the task (”Put groceries in the fridge.”), an elongated
and more detailed natural language description of the task
(”I put my groceries into the fridge.”), and the executable
actions to perform the task in the VirtualHome simulator
([[Walk] < groceries > (1), [Grab] < groceries > (1),
... [Close] < fridge > (1)]). We define the training and
testing tasks based on the natural language descriptions of
the task due to their straightforwardness.

In VirtualHome, the agents are represented as 3D humanoid
avatars that interact with given environments through pro-
vided, high-level instructions. Puig et al. (2018a) accu-
mulated a knowledge base of instructions by using human
annotators from AMT to first yield verbal descriptions of
verbal activities. These descriptions were further translated
by AMT annotators into programs utilizing a graphical pro-
gramming language, thus amassing around 3,000 household
activities in 50 different environments (Puig et al., 2018a).
In this study, we evaluate our model’s performance in seven
unique environments in VirtualHome, which are shown in
Figure 2. Each environment has a distinctive set of objects
and actions that may be interacted with by agents.
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Metrics We used standard NLP evaluation metrics, i.e.,
BLEU (Papineni et al., 2002), ROUGE (Lin, 2004), ME-
TEOR (Banerjee & Lavie, 2005), CIDEr (Vedantam et al.,
2015), and SPICE (Anderson et al., 2016), for evaluating
LLMs. In addition, we introduced the execution rate fol-
lowing Li et al. (2022b). The execution rate is defined as
the probability of the agent’s success in performing the
outputted action from APM over the whole trajectory.

4.2. Datasets

To fine-tune SUM and APM on task-specific robot learn-
ing scenarios, we collect data via VirtualHome, including
the agent’s observations, language instructions, and action
sequences. During data collection, a household activity pro-
gram can be described as: [[actioni] < objecti > (idi),
... [actionn] < objectn > (idn)], where i denotes each
step of the program, actioni and objecti denotes the action
performed on the object at step i, and idi symbolizes the
unique identifier of objecti (Puig et al., 2018a). The original
dataset was augmented by ResActGraph (Liao et al., 2019).
After augmentation, the dataset contains over 30,000 exe-
cutable programs, with each environment containing over
300 objects and 4,000 spatial relations. Additionally, we col-
lect the image and text pairs separated by the environments
they were executed in. This is important due to the different
objects and actions available in each environment. However,
as noted in Puig et al. (2018a) and Liao et al. (2019), not all
programs were executable.

During data collection, we observed that the text was com-
prised of two words (e.g. walk bathroom, sitting chair,
run treadmill). To have a more robust text description, we
prompt engineered the texts with a fill-mask pipeline using
BERT (Devlin et al., 2019; Song et al., 2019). For this
study, we collect programs executed in three different views:
‘AUTO’, ‘FIRST PERSON’, and ‘FRONT PERSON’ as
shown in Figure 3. In the ‘AUTO’ view, there are locked
cameras in every scene through which the program ran-
domly iterates through. The ‘FIRST PERSON’ view ob-
serves the agent’s actions through the first-person point of
view. The ‘FRONT PERSON’ view monitors the agent’s ac-
tions through the front in a locked third-person point of view.
Therefore, the final count of image-text pairs for our dataset
in the ‘AUTO’, ‘FIRST PERSON’, and ‘FRONT PERSON’
views are 26,600, 26,607, and 26,608, respectively.

4.3. Experimental Setup

SUM Setting For SUM, we use the following image cap-
tioning models to serve as SUM: OFA (Wang et al., 2022),
BLIP (Li et al., 2022a), and GRIT (Nguyen et al., 2022).
Both OFA and BLIP are pretrained on the same five datasets,
while the GRIT model (Nguyen et al., 2022) is pretrained on
a different combination of datasets. For OFA, we adopted

Figure 3. ‘AUTO’, ‘FIRST PERSON’, ‘FRONT PERSON’ views
of the data collected from VirtualHome.

OFALarge due to its superior performance in five variations.
OFALarge wields ResNet152 (He et al., 2015) modules with
472M parameters and 12 encoders and decoder layers. For
BLIP, we used ViT-L/16 as the image encoder due to its
better performance. For GRIP, we follow Nguyen et al.
(2022) which utilizes the Deformable DETR (Zhu et al.,
2020) framework. Note that in our study we want SUM
to generate captions that not only describe the scene but
also try to derive action from it. We observe that adding the
prompt ”a picture of ” following Wang et al. (2021) causes
the model to be biased in solely describing the scene, which
would in turn not be helpful for generating actionable cap-
tions. Therefore, we remove prompts in the SUM setting.
We load pretrained models and fine-tune them for 7 epochs
on our collected VirtualHome dataset. We keep the hyper-
parameters consistent with the original implementations (Li
et al., 2022a; Wang et al., 2022; Nguyen et al., 2022).

APM Setting We take LLM to act as the sole component
in our APM. The goal of APM is to generate executable
programs for the VirtualHome simulator. We deem the
program outputted by the APM executable if the agent in
the VirtualHome simulator is able to understand and perform
the action. When the action is executed by the agent, the
simulator is then directed to output images and captions
that are synonymous with the input of SUM. The output
hidden layers of SUM acts as the input embeddings to the
APM, while the tokenized executable actions act as labels.
The last hidden layer of APM acts as input embeddings for
the tokenizer and generates token identifiers. The token
identifiers are finally decoded into programmable actions
that are fed into the VirtualHome simulator.
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Table 1. Results by different SUM fine-tuned by imitation learning (IL) objective, where BERT serves as APM. The results are shown on
7 different environments in VirtualHome and also the average performance. The best result in each environment and each SUM model is
marked in black and bold. The best SUM result with the highest average performance across 7 environments is marked in orange and bold.

SUM/Results(%) Environment Bleu-1 Bleu-2 Bleu-3 Bleu-4 ROUGE-L METEOR CIDEr SPICE Execution Rate

OFA

1 55.1±0.05 45.4±0.10 36.5±0.20 23.0±0.00 60.0±0.16 33.4±0.00 30.2±0.44 49.9±0.43 78.0±2.39
2 58.0±0.20 41.7±0.19 35.1±1.01 22.1±0.73 60.1±0.50 34.1±0.52 30.3±0.71 48.1±0.41 79.9±2.37
3 55.3±0.30 42.3±0.62 34.9±0.15 23.0±0.00 60.5±0.01 34.8±0.64 31.2±0.55 48.4±0.17 80.0±3.29
4 57.8±0.73 42.2±0.31 35.3±0.38 24.5±0.67 59.9±0.45 34.6±0.54 33.1±0.63 49.0±0.66 79.9±4.14
5 59.4±0.44 40.3±0.03 34.8±0.02 24.2±0.37 59.7±0.25 35.1±0.62 32.7±0.24 38.0±0.13 77.4±1.12
6 60.5±0.01 48.1±0.53 36.6±0.07 25.1±0.15 61.9±0.13 36.2±0.60 34.6±1.07 49.9±0.77 80.5±1.13

. 7 58.2±0.30 46.5±0.58 34.6±0.04 22.3±0.08 58.3±0.92 35.6±0.62 30.8±0.37 44.2±0.33 69.2±2.31
Average 57.8±0.92 43.8±1.02 35.4±0.63 23.5±0.77 60.1±0.41 34.8±0.62 31.8±1.31 46.8±0.80 77.8±3.26

BLIP

1 51.1±0.50 42.6±0.41 33.2±0.34 21.1±0.63 60.8±0.73 34.7±0.63 35.5±00.09 42.7±0.91 72.6±1.99
2 50.5±0.87 41.8±0.72 30.5±28 22.3±0.34 60.3±0.64 33.6±0.87 30.0±0.72 42.8±0.99 66.1±4.21
3 52.4±0.54 43.2±0.65 33.6±0.13 21.1±0.52 61.4±0.29 34.5±0.12 31.1±0.00 48.9±0.80 85.0±3.32
4 51.0±1.19 42.1±0.87 33.8±0.54 22.8±0.65 60.6±0.76 34.4±0.98 35.1±0.85 46.0±0.74 73.0±3.65
5 49.0±0.53 38.8±0.43 30.4±0.72 20.0±0.47 58.6±0.65 34.1±0.75 21.0±0.66 30.8±0.69 67.2±0.93
6 52.6±0.79 44.5±0.00 31.0±0.63 24.8±0.62 62.0±0.73 35.3±1.02 31.0±0.02 42.4±0.87 84.1±3.54
7 52.7±0.50 44.0±0.21 33.6±0.18 24.0±0.52 61.7±0.08 34.5±0.60 34.5±0.81 48.8±0.28 86.0±4.92

Average 51.3±0.31 42.4±0.54 32.3±0.66 22.3±0.31 60.7±0.63 34.4±0.75 31.2±0.87 43.2±0.97 76.3±5.22

GRIT

1 50.5±0.99 40.5±0.86 31.8±1.82 20.7±1.02 60.0±1.44 33.1±0.97 30.4±1.42 41.7±0.85 69.2±5.57
2 52.1±0.66 41.8±1.77 31.7±1.92 20.1±0.97 59.9±0.65 32.1±0.76 29.4±0.87 42.0±0.88 71.4±5.52
3 52.3±0.88 40.3±0.82 32.1±0.77 19.9±1.53 60.4±0.68 31.7±0.66 30.1±2.52 43.5±1.64 71.3±5.98
4 51.9±0.93 39.8±0.92 31.8±0.97 21.3±1.72 59.7±1.22 32.0±0.76 30.0±0.79 42.8±0.84 72.8±4.65
5 54.7±0.93 42.3±1.02 33.2±1.25 24.5±0.93 62.3±1.42 33.8±1.77 30.7±1.32 44.6±1.23 78.5±5.07
6 54.6±1.42 44.7±1.64 34.1±1.32 25.8±1.22 65.8±1.25 30.1±2.31 34.5±0.72 44.0±0.96 78.4±3.66
7 53.9±0.88 42.0±1.79 32.6±2.00 22.5±0.90 63.4±1.00 31.8±1.23 32.3±1.31 43.1±1.41 70.0±3.99

Average 52.9±0.18 41.6±0.87 32.4±0.72 22.1±0.68 61.6±0.53 32.1±0.33 31.1±0.25 43.1±0.76 73.1±3.11

Table 2. Results by different APM fine-tuned by imitation learning (IL) loss objective. The results are shown by the average of 7 different
environments in VirtualHome. The best results are marked in bold.

APM/Results(%) SUM Bleu-1 Bleu-2 Bleu-3 Bleu-4 ROUGE-L METEOR CIDEr SPICE Execution Rate

BERT
OFA 57.8±0.92 43.8±1.02 35.4±0.63 23.5±0.77 60.1±0.41 34.8±0.62 31.8±1.31 46.8±0.80 77.8±3.26
BLIP 51.3±0.31 42.4±0.54 32.3±0.66 22.3±0.31 60.7±0.63 34.4±0.75 31.2±0.87 43.2±0.97 76.3±5.22
GRIT 52.9±0.18 41.6±0.87 32.4±0.72 22.1±0.68 61.6±0.53 32.1±0.33 31.1±0.25 43.1±0.76 73.1±3.11

RoBERTa
OFA 57.7±0.01 43.2±0.00 35.6±0.48 24.1±0.36 59.9±0.26 34.7±0.51 31.4±0.47 47.3±0.38 75.4±3.86
BLIP 50.5±0.71 41.1±0.29 32.0±0.11 23.5±0.64 61.1±0.88 33.0±0.70 31.8±0.81 42.9±0.94 77.7±0.71
GRIT 53.1±1.02 42.0±0.90 34.1±1.01 23.1±1.22 60.4±1.92 31.5±0.59 31.5±1.42 42.8±1.77 75.4±4.39

BART
OFA 59.5±0.09 45.9±0.31 39.8±0.37 28.1±0.72 61.3±0.65 37.2±0.69 34.4±0.78 47.0±0.88 79.0±1.91
BLIP 52.9±0.80 44.3±0.52 35.5±0.49 25.3±0.62 62.2±1.12 35.3±1.62 32.0±0.97 44.5±0.88 76.0±1.98
GRIT 54.2±1.68 43.2±1.85 33.6±1.60 25.3±0.93 62.7±1.85 33.8±0.62 33.7±0.74 44.7±1.12 77.9±1.77

5. Results and Discussions
5.1. Model Performance with IL Fine-tuning
We first want to show the benefit of the proposed framework
compared with other model architectures. Concretely, in the
IL setting with expert data, we compare the execution rate
of our model with the MLP, MLP-1 and LSTM baselines in
Li et al. (2022b). Our model has OFA in SUM and BART as
APM. Note that all the baselines are not trained by datasets
in other domains and have structured text input instead of
realistic visual inputs as our proposed model. In the LSTM
baseline, the hidden representation from the last timestep,
together with the goal and current observation, are used to
predict the next action. MLP and MLP-1 both take the goal,
histories, and the current observation as input and send them
to MLPs to predict actions. MLP-1 has three more average-
pooling layers than MLP that average the features of tokens
in the goal, history actions, and the current observation,
respectively, before sending them to the MLP layer. More
details about the baselines can be found in Li et al. (2022b).

Figure 4. Comparison of our approach with baseline methods in
the imitation learning setting evaluated by the execution rate.

As shown in Figure 4, our approach outperforms baselines
in Li et al. (2022b) in terms of a higher average execution
rate and a smaller standard deviation, though all the methods
are trained on expert data with imitation learning objectives.
The results show that the pretrained embeddings and large
model architecture benefit the performance in downstream
robot learning tasks.
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Table 3. Execution Rates by different SUM fine-tuned by REINFORCE, where BERT serves as APM. The results are shown on 7 different
environments in VirtualHome and also the average performance. The best results are marked in bold.

SUM Env-1 Env-2 Env-3 Env-4 Env-5 Env-6 Env-7 Average

OFA 50.1±0.65 50.3±0.52 51.5±0.48 57.8±0.88 55.2±0.00 56.6±0.37 59.3±0.48 54.4±0.55
BLIP 52.7±0.78 53.4±1.00 53.5±0.92 55.6±0.68 60.1±0.49 59.3±0.91 49.9±0.90 54.9±1.99
GRIT 38.7±1.02 40.0±1.11 51.3±0.99 48.2±0.90 46.5±0.85 55.8±0.70 45.3±1.08 46.5±2.01

Table 4. Results by different APM fine-tuned by REINFORCE
loss objective. The results are shown by the average of 7 different
environments in VirtualHome. The best results are marked in bold.

APM SUM Execution Rate (%)

BERT
OFA 54.7±1.15
BLIP 54.1±1.37
GRIT 53.9±3.00

RoBERTa
OFA 55.6±4.31
BLIP 55.2±1.16
GRIT 54.8±2.54

BART
OFA 57.2±2.43
BLIP 57.0±3.12
GRIT 55.8±0.99

5.2. Model Performance with RL Fine-tuning
We provide the model performance after fine-tuning SUM
with a frozen BERT in Table 1 for the IL setting with ex-
pert data and in Table 3 for the RL setting. We further
provide the performance after fine-tuning APM with the
fine-tuned SUM in Table 2 and Table 4. We can see that
fine-tuning with expert data in IL results in higher aver-
age and per-environment performance than fine-tuning with
RL, which shows the benefit of having access to the ex-
pert datasets. However, fine-tuning with RL still brings
performance improvement to 57.2% as in Table 4. Note that
without finetuning, the outputs of the LLMs in APM are
generally not executable as shown in Figure 1. Moreover,
we consistently observe that the combination of having OFA
in SUM and BART as APM achieves the best performance
after both IL (Table 2) and RL (Table 4) fine-tuning.

5.3. Ablation Study
To deeply understand the importance of different compo-
nents in our paradigm that affect the overall performance, we
conduct ablation studies on different factors including dif-
ferent components in SUM, different components in APM,
and different environment variations.

Different Components in SUM The performances of
using different components in SUM for IL and RL fine-
tuning are in Table 1 and Table 3, respectively. From Table 1,
we see that with expert data, OFA achieves better results
than BLIP and GRIT on the average performance over 7
environments. We conjecture that this may be due to OFA
being pretrained on 20M image-text pairs, which is larger
than the size of other models’ pretraining data. While under
REINFORCE fine-tuning loss, as in Table 3, BLIP slightly

outperforms OFA in terms of average performance but has
around 4 times larger standard deviation than OFA.

Different Components in APM The results of using dif-
ferent components in APM for IL and RL fine-tuning are
presented in Table 2 and Table 4, respectively. We found
that BART consistently outperforms other LLMs in both
settings. We hypothesize that due to BART’s architectural
nature as a denoising autoencoder, it is more suitable for
translating natural language descriptions into executable
action programs for the VirtualHome simulator.

Different Environments To test the performance varia-
tions under different environments, we conducted the exper-
iments separately for each unique environment. The results
are shown in Table 1 and Table 3, for fine-tuning SUM under
IL and RL settings, respectively. Due to image observation
variations having the most impact on SUM instead of APM,
so we only test the performance of SUM under different
environment settings. Through Table 1 and Table 3, we
could find that the variations exist among different environ-
ments. Generally, environment 6 seems to have the easiest
environmental settings for the model to learn.

Stability To evaluate the stability of different models un-
der different environments, we also calculated the standard
deviation (stds) of the results across different trials. The
results are shwon in Tables 1,2,3,4, which shows that BART
as APM and OFA seem to be more stable than the rest of
the combinations.

6. Conclusion
In this work, we introduce a novel robot learning paradigm
with LLM in the loop that handles multiple modalities of
visual observations and text-based actions in a principled
manner. We bridge both modalities with natural language
generated by a pretrained multimodal model. Our model
contains SUM and APM, where SUM uses image obser-
vations as inputs taken by the robot to generate language
descriptions of the current scene, and APM predicts the cor-
responding actions for the next step. We tested our method
in the VirtualHome under 7 unique environments, and the re-
sults demonstrated that our proposed paradigm outperforms
baselines in terms of execution rates and shows strong stabil-
ity across environments. One interesting future direction is
extending our proposed framework to solve generalization
tasks in a more data and parameter-efficient manner.
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A. Experiment Parameters

Table 5. Experiment parameters used in SUMs, where the best ones are marked in bold

SUM Batch Size Encoder Layers Att. Heads Learning Rate Dropout Epochs

OFA [4, 8, 16, 32] [24] [16] [1e-4, 1e-5, 1e-7] [0.1, 0.2, 0.3] [2, 5, 10, 20, 50]
BLIP [8, 16, 32, 64] [12] [12] [1e-4, 1e-5, 1e-7] [0.1, 0.2, 0.3] [2, 5, 10, 20, 50]
GRIT [4, 8, 16, 32] [6] [8] [1e-4, 1e-5, 1e-6] [0.1, 0.2, 0.3] [2, 5, 10, 20, 50]

Table 6. Experiment parameters used in Supervised APMs, where the best ones are marked in bold
APM Batch Size Encoder Layers Att. Heads Learning Rate Dropout Epochs

BERT [4, 8, 16, 32] [12] [12] [1e-4, 1e-5, 1e-7] [0.1, 0.2, 0.3] [2, 5, 10, 20, 50]
BART [8, 16, 32, 64] [12] [16] [1e-4, 1e-5, 1e-7] [0.1, 0.2, 0.3] [2, 5, 10, 20, 50]
RoBERTa [4, 8, 16, 32] [12] [12] [1e-4, 1e-5, 1e-7] [0.1, 0.2, 0.3] [2, 5, 10, 20, 50]

Table 7. Experiment parameters used in REINFORCE APMs, where the best ones are marked in bold
APM Batch Size Encoder Layers Att. Heads Learning Rate Dropout Epochs

BERT [4, 8, 16, 32] [12] [12] [1e-4, 1e-5, 1e-7] [0.1, 0.2, 0.3] [2, 5, 10, 20, 50]
BART [8, 16, 32, 64] [12] [16] [1e-4, 1e-5, 1e-7] [0.1, 0.2, 0.3] [2, 5, 10, 20, 50]
RoBERTa [4, 8, 16, 32] [12] [12] [1e-4, 1e-5, 1e-7] [0.1, 0.2, 0.3] [2, 5, 10, 20, 50]

B. More Related Work
Multimodal Learning Formalized multimodal learning research dates back to 1989 when (Yuhas et al., 1989) conducted
an experiment that built off the McGurk Effect for audio-visual speech recognition using neural networks (Tiippana, 2014;
McGurk & MacDonald, 1976). Researchers in NLP and CV collaborated to make large and multimodal datasets available,
catering to specific downstream tasks, such as segmentation, detection, summarization, and so on (Xu et al., 2022; Qiu
et al., 2022; Han et al., 2022; He et al., 2023; Qiu et al., 2023). In correlation, improvements in LLMs opened the gates to
include other modalities of data, most frequently visual data (Wang et al., 2022; Nguyen et al., 2022; Li et al., 2022a; Wang
et al., 2021; Shah et al., 2022; Zhang et al., 2021; Wang et al., 2020). By utilizing the learned embeddings that have been
pretrained on both language and image datasets, vision-language models are able to perform very well. Within the above
success, image captioning has been an important task in multimodal learning, which aims at generating textual descriptions
for the given images. Recently, many models have been proposed and showed fabulous performances, i.e., BLIP, OFA, and
GRIT (Li et al., 2022a; Wang et al., 2022; Nguyen et al., 2022).

C. More Introduction about Different SUM
OFA OFA (Wang et al., 2022) is a task and modality agnostic framework that supports a wide variety of cross-modal
and unimodal tasks For the architecture, OFA utilizes a Seq2Seq (Sutskever et al., 2014) framework for all pretraining
and downstream tasks of both cross-modal and unimodal generation. Data preprocessing and fixed modality accessories
are necessary to warrant the joint training of visual and language data within the Transformer (Vaswani et al., 2017a)
architecture. OFA uses ResNet (He et al., 2015) modules to convolve patch features of the hidden size during object feature
extraction. In the case of processing language data, OFA follows the practice of GPT (Radford & Narasimhan, 2018) and
BART (Lewis et al., 2019) by administering byte-pair encoding (BPE) for a given text sequence. The encoding is then
transformed into a subword sequence, which is then embedded into features.

BLIP BLIP (Li et al., 2022a) is a unified vision-language pretraining (VLP) framework that also supports a wide variety
of vision-language tasks, such as image-text retrieval, image captioning, and visual question answering. The authors propose
three functionalities in their multi-task model: unimodal encoder, image-grounded text encoder, and image-grounded text
decoder (Li et al., 2022a). They adopt the visual transformer (ViT) (Dosovitskiy et al., 2020) as their image encoder. BLIP
is able to effectively use noisy image and text pairs by bootstrapping the captions through their proposed method Caption
and Filtering (CapFilt), in which a captioner, given web images, produces artificial captions and a filter removes the noisy
image-text pairs.

GRIT GRIT (Nguyen et al., 2022) is a Transformer-only (Vaswani et al., 2017a) architecture that uses grid and region-
based features in images to generate captions. (Nguyen et al., 2022) define grid features as local image features extracted



Visual-based Policy Learning with Latent Language Encoding

from grid points and region features as a set of local image features of regions (i.e., bounding boxes). Instead of using a
CNN-based object detector, GRID uses the Deformable DETR (Zhu et al., 2020) skeleton for faster computation (Nguyen
et al., 2022). (Nguyen et al., 2022) also replaces the CNN backbone used in the original Deformable DETR to a Swin
Transformer (Liu et al., 2021). The Swin Transformer (Liu et al., 2021) extracts features from the input image and obtains
grid features as well. Similarly to the OFA model, the GRIT model was pre-trained with a cross-entropy loss and was
fine-tuned using CIDEr-D optimization (Nguyen et al., 2022).

D. More Experimental Results
Fine-tuning performance on in-distribution tasks and unseen tasks To further support our findings, we conducted
additional experiments that tested the fine-tuning performance on in-distribution tasks and unseen tasks in the VirtualHome
environment following the setting in Li et al. (2022b). Li et al. (2022b) used reinforcement learning to adapt to downstream
tasks. It’s important to note that Li et al. (2022b) used oracle text-based inputs that summarize the current observation,
whereas we use raw image inputs and understand the scene with our fine-tuned SUM module. We measure the performance
with the episode success rate and summarize the main comparison results with Li et al. (2022b)) in Table 8. Our results show
that when fine-tuning with REINFORCE, our method outperforms Li et al. (2022b) in both in-distribution tasks and novel
tasks. Additionally, when expert data is available in the downstream tasks, fine-tuning with imitation learning outperforms
the REINFORCE approach.

Table 8. Comparison of episode success rate.

Method In-Distribution Tasks Novel Tasks

Li et al. (2022b) 53.7 27.8
Ours (REINFORCE) 58.4 33.7
Ours (Imitation Learning) 68.4 44.8

Table 9. Our fine-tuning results for different SUM/APM configurations in in-distribution and novel tasks, as well as using REINFORCE
and imitation learning strategies. We measure the performance based on the episode success rate.

SUM APM In-Distribution REINFORCE Novel Tasks REINFORCE In-Distribution Imitation Novel Tasks Imitation

OFA
BERT 56.1 31.4 65.2 40.7
BART 58.4 33.7 68.4 44.8

RoBERTa 51.7 32.3 66.0 42.8

BLIP
BERT 53.7 28.5 61.1 39.5
BART 55.2 31.2 64.3 40.3

RoBERTa 50.6 29.3 62.8 39.8

GRIT
BERT 50.5 28.8 61.3 40.4
BART 51.2 30.0 63.7 39.6

RoBERTa 49.0 27.1 59.2 38.7

Importance and necessity of fine-tuning To underscore the importance and necessity of fine-tuning, we present additional
zero-shot testing performances without fine-tuning in Table 10 and Table 11. Our findings reveal that the episode success
rate and action execution rates are significantly lower without fine-tuning in both methods, which highlights the crucial role
that fine-tuning plays in improving performance.

Table 10. Comparison action execution rates in zero-shot and fine-tuned settings using both REINFORCE and Imitation Learning.

Method APM SUM REINFORCE Imitation Learning

1 Zero-shot Zero-shot 0.1 0.1
2 Zero-shot Fine-tuned 14.5 21.4
3 Fine-tuned Zero-shot 5.8 6.9
4 Fine-tuned Fine-tuned 57.2 77.8

Table 11. Comparison episode success rate in zero-shot and fine-tuned settings using both REINFORCE and Imitation Learning.

Method APM SUM REINFORCE Imitation Learning

1 Zero-shot Zero-shot 0.7 0.7
2 Zero-shot Fine-tuned 16.7 19.5
3 Fine-tuned Zero-shot 7.7 8.7
4 Fine-tuned Fine-tuned 58.4 76.8


