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Abstract
We study a strategic variant of the multi-armed
bandit problem, which we coin the strategic click-
bandit. This model is motivated by applications
in online recommendation where the choice of
recommended items depends on both the click-
through rates and the post-click rewards. Like in
classical bandits, rewards follow a fixed unknown
distribution. However, we assume that the click-
through rate of each arm is chosen strategically by
the arm (e.g., a host on Airbnb) in order to max-
imize the number of times it gets clicked. The
algorithm designer does not know the post-click
rewards nor the arms’ actions (i.e., strategically
chosen click-rates) in advance, and must learn
both values over time. To solve this problem,
we design an incentive-aware learning algorithm,
UCB-S, which achieves two goals simultaneously:
(a) aligning incentives by incentivizing desirable
arm actions under uncertainty; (b) learning un-
known parameters. We approximately character-
ize all Nash equilibria among arms under UCB-S
and show a Õ(

√
KT ) regret bound in every equi-

librium. We also show that incentive-unaware
algorithms generally fail to achieve low regret in
the strategic click-bandit setup.

1. Introduction
Recommendation platforms act as intermediaries between
vendors and users so as to recommend items from the for-
mer to the latter. On Amazon, vendors sell physical items,
while on Youtube the recommended items are videos. The
recommendation problem is how to select one or more items
to present to each user so that they are most likely to click
on at least one of them.

However, vendor-chosen item descriptions are an essential
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aspect of the problem that is often ignored. These invite
vendors to exaggerate their true value in the descriptions in
order to increase their Click-Through-Rates (CTRs). As a
consequence, though online learning algorithms can gener-
ally identify relevant items, the existence of unrepresentative
or exaggerated item descriptions remains a challenge (Yue
et al., 2010; Hofmann et al., 2012). These include thumb-
nails or headlines that do not truly reflect the underlying item
(see Figure 1)—a well-known internet phenomenon called
the clickbait in the context of articles. While moderately
increasing user click-rates through attractive descriptions
is often encouraged since it helps to increase the overall
user activity, clickbait can be harmful to a platform as it
leads to bad recommendation outcomes and damage to the
platform’s reputation which may exceed the value of any
additional clicks it brings. A key reason for such dishonest
or exaggerated item deceptions is the strategic behavior of
vendors driven by their incentive to increase their item’s
exposure and click probability. Thus naturally, vendors are
better off carefully choosing descriptions so as to increase
click-rates, which leads to phenomena such as clickbait.1

To address this issue, we take an approach that marries
mechanism design without payments to online learning,
which are two celebrated research areas, however, mostly
studied as separate streams. Since clickbait is fundamentally
driven by vendor incentives, we believe that the novel design
of online learning policies that can carefully align vendor
incentives with the platform’s overall objective may help to
resolve this issue from its root.

To incorporate vendor-chosen item descriptions in this set-
ting, we propose and study a natural strategic variant of
the classical Multi-Armed Bandit (MAB) problem, which
we call the strategic click-bandit in order to emphasize the
strategic role that clicks and CTRs play in our setup.2 Con-
cretely, in strategic click-bandits, each arm i is characterized
by (a) a reward distribution with mean µi, inherent to the

1This is possible because most platforms rely on vendors to
provide descriptions about their items. For instance, the images
of restaurants on Yelp, rentals on Airbnb, hotels on Expedia, title
and thumbnails of Youtube videos, and descriptions of products
on Amazon are all provided by these items’ vendors.

2We use the terms click-through-rate, click-rate, and click prob-
ability interchangeably.
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Figure 1. Examples of unrepresentative or clickbait headlines and thumbnails on Bing News, Airbnb, Youtube, and Facebook Marketplace
(identifying information partly redacted).

arm; and (b) a click probability si ∈ [0, 1], chosen freely by
the arm at the beginning. Since the learner (i.e., the recom-
mendation system) knows neither of these values, it must
learn them through interaction. The learner’s objective is
represented through a general utility function u(si, µi) that
depends on both click-rate and post-click rewards.

The strategic click-bandit proceeds in two phases. In the first
phase, the learner commits to an online learning policy M ,
upon which each arm i chooses a description, which results
in a corresponding CTR si ∈ [0, 1]. The second phase
proceeds in rounds. At each round t: (1) the algorithm M
pulls/recommends an arm it based on observed past data;
(2) arm it is clicked with probability sit ; (3) if it is clicked,
ct,it = 1, the arm it receives utility 1 (whereas all other
arms i receive utility 0 and ct,i = 0) and the learner observes
a post-click reward drawn from it’s reward distribution. If
it is not clicked, all arms receive 0 utility and the learner
does not observe any post-click rewards. From the learner’s
perspective, both si and µi of each arm are unknown but can
be learned from online bandit feedback — that is, whether
the recommended arm is clicked and, if so, what its realized
reward is.

We highlight two fundamental differences between strate-
gic click-bandits and standard MABs. First, each arm in
the strategic click-bandit is a self-interested agent whose
objective is to maximize the number of times it gets clicked∑T

t=1 1{it=i} ct,i with ct,i ∼ Bern(si). This captures the
strategic behavior of many vendors in online recommen-
dations, especially those who are rewarded based on user
clicks (e.g., Youtube (2023)). Second, si ∈ [0, 1] is a freely
chosen action by arm i, rather than a fixed parameter of arm
i. We believe these modeling adjustments more realistically
capture vendor behaviors in real applications. They also lead
to intriguing mechanism design questions since the bandit
algorithm not only needs to learn the unknown parameters
si, µi, but also has to carefully align arms’ incentives to
avoid undesired arm behavior.

In summary, our contributions are:

1. We introduce the strategic click-bandit problem,
which involves strategic arms manipulating click-
rates so as to maximize their own utility and show

that incentive-unaware algorithms generally fail to
achieve low regret in the strategic click-bandit (Sec-
tion 3, Proposition 4.2).

2. We design an incentive-aware learning algorithm,
UCB-S, that combines mechanism design and on-
line learning techniques and effectively incentivizes
desirable arm strategies while minimizing regret by
making credible and justified threats to arms under
uncertainty (Section 5).

3. We characterize the Nash equilibria among arms un-
der the UCB-S mechanism and show that every arm
i’s strategy is Õ

(
max

{
∆i,

√
K/T

})
close to the de-

sired strategy (Theorem 5.2).

4. We show that UCB-S achieves Õ
(√

KT
)

strong
strategic regret (Theorem 5.3) and complement this
with an almost matching lower bound on weak strate-
gic regret (Theorem 5.5).

2. Related Work
The MAB problem is a well-studied online learning frame-
work, which can be used to model decision-making under
uncertainty (Lai et al., 1985; Auer, 2002). Since it inherently
involves sequential actions and the exploration-exploitation
trade-off, the MAB framework has been applied to online
recommendations (Li et al., 2010; Zong et al., 2016; Wang
et al., 2017) as well as a myriad other domains (Bouneffouf
et al., 2020). While there is a wide spectrum of work con-
cerned with strategic machine learning (e.g., Hardt et al.,
2016; Freeman et al., 2020; Zhang and Conitzer, 2021),
we focus on related work that connects online learning
(and specifically the MAB formalism) to mechanism de-
sign (Nisan and Ronen, 1999).

To the best of our knowledge, Braverman et al. (2019) is the
first to study a strategic variant of the multi-armed bandit
problem. In their model, when an arm is pulled, it receives a
privately observed reward ν and chooses to pass on a portion
x of it to the principal, keeping ν − x for itself. The goal
of the principal is then to incentivize arms to share as much
reward with the principal as possible. In contrast to our
work, the principal must not learn the underlying reward dis-
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tribution or the arm strategies, but instead design an auction
among arms based on the shared rewards. Feng et al. (2020)
and Dong et al. (2022) study the robustness of bandit algo-
rithms to strategic reward manipulations. However, neither
work attempts to align incentives by designing mechanisms,
but instead assume a limited manipulation budget. Shin et al.
(2022) study multi-armed bandits with strategic replication
in which agents can submit several arms with replicas to
the platform. They design an algorithm, which separately
explores the arms submitted by each agent and in doing
so discourages agents from creating additional arms and
replicas.

Another line of work studies auction-design in multi-armed
bandit formalisms, often motivated by applications in ad
auctions (Babaioff et al., 2009; Devanur and Kakade, 2009;
Babaioff et al., 2015). In these models, in every round the
auctioneer selects one advertiser’s item, which is subse-
quently clicked or not. Each advertiser has a private value-
per-click, which is unknown to the auctioneer, and instead
submits a bid, which may differ from their value-per-click.
The designer’s goal is to incentivize agents to truthfully bid
their value-per-click so as to maximize social welfare by
constructing selection and payment rules. Similarly, Gao
et al. (2021) study an auction-based combinatorial multi-
armed bandit with payments, where each arm can misreport
a cost for its selection.

To the best of our knowledge, our work is the first to study
the situation where the arms’ strategies (as well as other
parameters) are initially unobserved, but must be learned
from interaction while simultaneously incentivizing arms
under uncertainty without payments. As a result, while
other work is usually able to precisely incentivize certain
arm strategies, our mechanism design and characterization
of the Nash equilibria are approximate.

3. The Strategic Click-Bandit Problem
We consider a natural strategic variant of the classical
MAB, motivated by applications in online recommenda-
tion. Unlike classical MABs, strategic click-bandits feature
decentralized interactions with the learner and multiple self-
interested arms. In the following, we will also refer to this
online learning policy as a mechanism to emphasize its dual
role in learning and incentive design.

Let [K] := {1, . . . ,K} denote the set of arms, each being
viewed as a strategic agent. At the beginning, the leaner
commits to a history-dependent arm selection policy M ,
which is made public. Then, each arm chooses a strategy
si ∈ [0, 1], which determines the probability of the arm
being clicked (i.e., the CTR) after it is pulled (i.e., after it
is recommended by the learner). Then, at each round t, the
learner selects an arm it. The selected arm is clicked with

probability sit . If the arm is clicked, then ct,it = 1 and a
stochastic reward rt with mean µit , is generated. This mean
µi is fixed for each arm i captures the true value of this
arm. Because we only observe the reward when arm gets
clicked, we call the setting “click-bandits”. We summarize
the interaction in Model 1.

Model 1 The Strategic Click-Bandit Problem
1: Learner commits to algorithm M (shared with all arms)
2: Arms choose strategies (s1, . . . , sK) ∈ [0, 1]K

3: for t = 1, . . . , T do
4: Algorithm M selects arm it ∈ [K]
5: Arm it is clicked w.p. sit , i.e., ct,it ∼ Bern(sit)
6: if it was clicked (ct,it = 1) then
7: Arm it receives utility 1 from the click
8: M observes post-click reward rt,it ∈ [0, 1] sam-

pled from a distribution with mean µi

The following two assumptions specify the information
available to the learner and the arms.
Assumption 3.1. The learner does not see the arm strategies
s1, . . . , sK in advance, but only observes whether the arm
is clicked or not in round t. Similarly, the learner does not
know the mean post-click rewards µ1, . . . , µK in advance,
but only observes the realized reward rt,it if it is clicked.
Assumption 3.2. Every arm i ∈ [K] has private knowledge
of their mean post-click reward µi, but knows the maximal
value among all arms (not index) µ∗ := maxi∈[K] µi.

3.1. Learner’s Utility

The learner’s utility of selecting an arm i with CTR si and
post-click value µi is denoted as u(si, µi). One example of
this utility function is u(s, µ) = sµ. In this case, the learner
monotonically prefers large s and does not care about how
much the click-rate s differs from the post-click value µ.
However, we believe that the learner (e.g., a platform like
Youtube or Airbnb) usually values consistency between the
click-rates and the post-click values of arms. This could be
captured by a penalty term for how much si differs from
µi; for instance, another natural choice is u(s, µ) = sµ −
λ(s − µ)2 for a weight λ > 0. Such non-monotonicity of
the learner’s utility u(si, µi) in si versus arm i’s monotonic
preference of larger click-rates si forms the fundamental
tension in the strategic click-bandit model and is also the
reason that mechanism design is needed. We keep the above
utility functions in mind as running examples, but derive
our results for a general class of functions u satisfying the
following regularity assumptions:

(A1) u : [0, 1]× [0, 1]→ R is L-Lipschitz.

(A2) u∗(µ) := maxs∈[0,1] u(s, µ) is increasing.

(A3) s∗(µ) := argmaxs∈[0,1] u(s, µ) is H-Lipschitz.
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(A1) bounds the loss of selecting a suboptimal arm. (A2)
states that, in the (idealized) situation when the arms choose
CTR s so as to maximize the learner’s utility u, then an
arm with larger post-click rewards µ is preferred. (A3)
then ensures that the ideal strategy under a utility function
u, as a function of µ, does not change abruptly w.r.t. µ.
From hereon-out, we work under a general learner’s utility
u satisfying (A1)-(A3).

In the following, the function s∗(µ) will play a central role
as it describes the arm strategy that maximizes the learner’s
utility. As such, the learner will typically try to incentivize
an arm with post-click reward µ to choose s∗(µ). Finally,
we remark that our analysis straightforwardly generalizes
to the case in which different arms correspond to different
utility functions ui. However, for notational convenience,
we decide to use the same u among arms for the rest of the
paper. Moreover, while we assume that the utility function
u does not depend on the arms’ stochastic reward realization
rt,i, we can equivalently think of u depending on rt,i lin-
early so that the dependency boils down to the dependence
on µi after taking expectation. Assuming such quasi-linear
utilities is standard in most literature, and is widely known
as the von Neumann–Morgenstern utility assumption in eco-
nomics.

3.2. Arms’ Utility and Nash Equilibria Among Arms

The mean µi of each arm i’s true value is fixed, whereas
arm i can freely choose the CTR value si. In the strategic
click-bandit, the objective of each arm i is to maximize the
number of times it gets clicked

∑T
t=1 1{it=i} ct,i, which

captures the incentives of many vendors on internet plat-
forms, for whom user traffic typically proportionally con-
verts to revenue.3 We now introduce the solution concept
for the game among arms defined by a mechanism M and
post-click rewards µ1, . . . , µK , often referred to as an equi-
librium. Let s−i denote the K − 1 strategies of all arms
except i. Each arm i chooses si to maximize their expected
number of clicks vi(M, si, s−i), which is a function of their
own action si, the mechanism M as well as all other arms’
actions s−i. Concretely,

vi(M, si, s−i) := EM

[
T∑

t=1

1{it=i} ct,i

]
(1)

where the expectation is taken over the mechanism’s de-
cisions and the environment’s randomness. We generally
write s := (s1, . . . , sK) to summarise a strategy profile of

3More generally, different arms i may have a different
value-per-click νi that could as well depend on µi so that
vi(M, si, s−i) = EM [

∑
t 1{it=i} ct,i νi]. This can easily be

accommodated for by our model and our results readily extend to
this case since each arm’s goal still boils down to maximizing the
number of clicks.

the arms. Let Σ denote the set of probability measures over
[0, 1]. For a mixed strategy profile σ = (σi, σ−i) ∈ ΣK ,
i.e., a distribution over pure strategies, arm i’s utility un-
der mechanism M is then defined as vi(M,σi, σ−i) :=
Es∼σ[vi(M, si, s−i)].
Definition 3.3 (Nash Equilibrium). We say that σ =
(σ1, . . . , σK) ∈ ΣK is a Nash equilibrium (NE) under
mechanism M if vi(M,σi, σ−i) ≥ vi(M,σ′

i, σ−i) for all
i ∈ [K] and strategies σ′

i ∈ Σ.

In other words, σ is a Nash equilibrium if no arm i can
increase its utility by unilaterally deviating to any σ′

i. If
a Nash equilibrium σ ∈ ΣK is a pure strategy profile
s ∈ [0, 1]K (i.e., each σi is a point distribution supported
on a single action si), this equilibrium is said to be a
pure-strategy Nash equilibrium. Let NE(M) := {σ ∈
ΣK : σ is a NE under M} denote the set of all (possibly
mixed) Nash equilibria for the arms under mechanism M .
Following conventions in standard economic analysis, we
assume that arms’ strategies will from a Nash equilibrium
in NE(M).
Remark 3.4 (Existence of Nash Equilibrium). In general,
the arm’s utility function vi(M, si, s−i) may be discontinu-
ous in the arms’ strategies due to its intricate dependence on
the learning algorithm M . It is well-known that in games
with discontinuous utility functions, a Nash equilibrium may
not exist (Reny, 1999). Nevertheless, for all algorithms we
consider we will prove the existence of a Nash equilibrium
by either explicitly describing the equilibrium or implicitly
proving its existence.

3.3. Strategic Regret

The learner’s goal is to maximize
∑T

t=1 u(sit , µit), which
naturally depends on the strategies s1, . . . , sK . For given
post-click values µ1, . . . , µK , the maximal utility u(s∗, µ∗)
is then achieved for µ∗ := maxi∈[K] µi and s∗ := s∗(µ∗),
that is, u(s∗, µ∗) = maxi∈[K] maxs∈[0,1] u(s, µi). With
u(s∗, µ∗) as a benchmark, we then define the strategic re-
gret of a mechanism M under a pure-strategy equilibrium
s ∈ NE(M) as

RT (M, s) := E

[
T∑

t=1

u(s∗, µ∗)− u(sit , µit)

]
. (2)

For a mixed-strategy equilibrium σ ∈ NE(M), we then
accordingly define the strategic regret as

RT (M,σ) := Es∼σ[RT (M, s)].

In general, there may exist several Nash equilibria for the
arms under a given mechanism M . Then, we can consider
the strong strategic regret of M given by the regret under
the worst-case Nash equilibrium:

R+
T (M) := max

σ∈NE(M)
RT (M,σ),
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or the weak strategic regret given by the regret under the
most favorable Nash equilibrium:

R−
T (M) := min

σ∈NE(M)
RT (M,σ).

Naturally, R+
T (M) ≥ R−

T (M). The regret upper bound of
our proposed algorithm, UCB-S, holds under any Nash equi-
librium in NE(UCB-S), thereby bounding strong strategic
regret (Theorem 5.3). On the other hand, the lower bounds
we prove (Proposition 4.2 and Theorem 5.5) hold for weak
strategic regret (and therefore also apply to its strong coun-
terpart).

4. Necessity of Incentive Design: Limitations
of Incentive-Unaware Oracles

We start our analysis of the strategic click-bandit prob-
lem by showing that simply finding the arm with the
largest post-click reward, argmaxi µi, or largest utility,
argmaxi u(si, µi), is insufficient to achieve o(T ) weak
strategic regret. In fact, we find that even with oracle knowl-
edge of µ1, . . . , µK and s1, . . . , sK , an algorithm may suf-
fer linear weak strategic regret if it fails to account for the
arms’ strategic nature. For such incentive-unaware oracle
algorithms, we show a Ω(T ) lower bound on weak strate-
gic regret for any utility function of the learner that is not
trivial to optimize, that is, when the loss of deviating from
the maximal utility u(s∗, µ∗) is locally lower bounded by a
“reverse Lipschitz” constant formally defined below.
Definition 4.1 (Locally Reverse Lipschitz). The utility func-
tion u is locally reverse L̃-Lipschitz at (s∗, µ∗) if for all
s ∈ [0, 1] and µ ∈ [0, 1]:

|u(s∗, µ∗)− u(s, µ)| ≥ L̃
(
|s∗ − s|+ |µ∗ − µ|

)
.

For the statement of the lower bound, recall the defini-
tion of the maximal post-click reward µ∗ := maxi µi and
(learner’s) utility-maximizing arm strategy s∗ := s∗(µ∗).
Moreover, let the optimality gaps in terms of post-click
rewards be given by ∆i := µ∗ − µi with minimal gap
∆ := mini:∆i>0 ∆i.
Proposition 4.2. Let µ1, . . . , µK ∈ [0, 1] with unique i∗ ∈
argmaxi∈[K] µi. For any utility function u that is locally
reverse L̃-Lipschitz at (s∗, µ∗) with s∗ ≤ c for some c ∈
[0, 1), the following holds:

(i) Let Oracleµ be the algorithm with oracle knowledge
of µ1, . . . , µK that plays it = argmaxi∈[K]µi in ev-
ery round t.

For every equilibrium σ ∈ NE(Oracleµ) among the
arms, the algorithm suffers regret Ω

(
L̃T
)
, i.e., its

weak strategic regret is lower bounded as

R−
T (Oracleµ) = Ω

(
L̃T
)
.

(ii) Let Oracles,µ be the algorithm with oracle knowl-
edge of µ1, . . . , µK and s1, . . . , sK that plays it =
argmaxi∈[K]u(si, µi) in every round t with ties bro-
ken in favor of the larger µ.

For every equilibrium σ ∈ NE(Oracles,µ) of the
arms, the algorithm suffers regret Ω

(
∆L̃T

)
, i.e., its

weak strategic regret is lower bounded as

R−
T (Oracles,µ) = Ω

(
∆L̃T

)
.

Proof Sketch. (i): We show that, under the described al-
gorithm, s = 1 is a strictly dominant strategy for arm i∗.
This implies that arm i∗ plays si∗ = 1 with probability
one in every Nash equilibrium under the oracle algorithm.
The claimed lower bound then follows from bounding the
instantaneous regret from below using s∗(µi∗) ≤ c.

(ii): Let j∗ ∈ argmaxi ̸=i∗ µi. It can be seen that in any Nash
equilibrium, arm i∗ will play the largest s ∈ [0, 1] such that
u(s, µi∗) ≥ u(sj∗ , µj∗). We then show that (at least) either
si∗ = 1 or u(si∗ , µi∗) = u(s∗(µj∗), µj∗). Once again this
allows us to bound the instantaneous regret for every round
from below, which yields the claimed lower bound.

Remark 4.3. Interestingly, when the algorithm, Oracles,µ,
from Proposition 4.2 (ii) does not break ties in favor of the
larger µ but instead uniformly at random, it can be shown
that in all but a few problem instances no Nash equilibrium
for the arms exists. However, for any ε > 0 we can explicitly
construct an ε-Nash equilibrium for the arms under which
the algorithm suffers Ω(∆L̃T ) regret.

5. No-Regret Incentive-Aware Learning:
UCB-S

The results of Proposition 4.2 suggest that an incentive-
unaware learning algorithm that is oblivious to the strategic
nature of the arms will generally fail to achieve low re-
gret. In particular, “unconditional” selection of any arm will
likely result in undesirable Nash equilibria among arms. For
these reasons, we deploy a conceptually simple screening
idea, which threatens arms with elimination when deviating
from the desired strategies. The challenge is that the arm
strategies s1, . . . , sK are unknown to the mechanism ahead
of time and must be learned through repeated interaction.

Let denote nt(i) be the number of times up to (and includ-
ing) round t that arm i was selected by the learner, whereas
we let mt(i) denote the number of times post-click rewards
were observed for arm i up to (and including) round t. Let
ŝti be the average observed click-rate and µ̂t

i the average
observed post-click reward for arm i. We then define the
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Algorithm 1 UCB with Screeing (UCB-S)
1: initialize: A0 = [K]
2: for t = 1, . . . , T do
3: if At−1 ̸= ∅ then
4: Select it ∈ argmaxi∈At−1

µt−1
i

5: else
6: Select it uniformly at random from [K]
7: Arm it is clicked with probability sit , i.e., ct,it ∼ Bern(sit)
8: if it was clicked (ct,it = 1) then
9: Observe post-click reward rt,it ∈ [0, 1]

10: if stit < minµ∈[µt
it
,µt

it
] s

∗(µ) or stit > maxµ∈[µt
it
,µt

it
] s

∗(µ) then
11: Ignore arm it in future rounds: At ← At−1 \ {it}

optimistic and pessimistic estimates of si and µi as

sti = ŝti −

√
2 log(T )

nt(i)
, sti = ŝti +

√
2 log(T )

nt(i)
,

µt
i = µ̂t

i −

√
2 log(T )

mt(i)
, µt

i = µ̂t
i +

√
2 log(T )

mt(i)
.

where sti = −∞ and sti = +∞ for nt(i) = 0 and µt
i
=

−∞ and µt
i = +∞ for mt(i) = 0.

In every round, UCB-S selects arms optimistically according
to their post-click rewards and subsequently observes if the
arm is clicked, i.e., ct,it , and, if so, a post-click reward rt,it .
However, if an arm’s click-rate si is detected to be different
from the learner’s desired arm strategy s∗(µi), the arm is
eliminated forever, expressed by the screening rule in line 1:

stit < min
µ∈[µt

it
,µt

it
]
s∗(µ) or stit > max

µ∈[µt
it
,µt

it
]
s∗(µ).

The only exception is when all arms have been eliminated.
Then, UCB-S plays them all uniformly for the remaining
rounds. To ensure that the elimination of an arm is credible
and justified with high probability, we use high confidence
bounds on si and µi. More precisely, if an arm chooses
si = s∗(µi) (as asked), then with probability 1 − 1/T 2 it
will not be eliminated by the screening rule.

As a prelude to the analysis of the UCB-S mechanism, we
begin by showing that there always exists a Nash equilib-
rium among the arms under UCB-S. As mentioned briefly
in Section 3, the existence of a Nash equilibrium among
the arms is not guaranteed under an arbitrary mechanism
due to the arms’ continuous strategy space and possibly
discontinuous utility function.

Lemma 5.1. For any post-click rewards µ1, . . . , µK , there
always exists a (possibly mixed) Nash equilibrium for the
arms under the UCB-S mechanism.

5.1. Characterizing the Nash Equilibria under UCB-S

We now approximately characterize the Nash equilibria for
the arms under the UCB-S mechanism. In order to prove a
regret upper bound for UCB-S, it will be key to ensure that
each arm i plays a strategy si which is sufficiently close to
the desired strategy s∗(µi) (i.e., the strategy that maximizes
the learner’s utility). This is particularly important for arms
i∗ with maximal post-click rewards µi∗ = µ∗. If such arms
i∗ deviate substantially from s∗(µi∗), e.g., by a constant
amount, the learner would be forced to suffer constant regret
even when selecting arms with maximal post-click rewards.

In the following, we show that under the UCB-S mechanism
every Nash equilibrium consists of strategies such that the
strategies of arms with maximal post-click rewards deviate
from the desired strategies by at most Õ(

√
K/T ). We then

also show that for suboptimal arms the difference between
each arm’s strategy si and the desired strategy s∗(µi) is
governed by their optimality gap in terms of post-click re-
wards, given by ∆i := µ∗ − µi. Recall that H denotes the
Lipschitz constant of s∗(µ).

Theorem 5.2. For all s ∈ supp(σ) with σ ∈ NE(UCB-S)
and all i ∈ [K]:

si = s∗(µi) +O

(
H ·max

{
∆i,

√
K log(T )

T s∗(µi)2

})
.

In particular, for all arms i∗ ∈ [K] with ∆i∗ = 0:

si∗ = s∗(µi∗) +O

(
H

√
K log(T )

T s∗(µi∗)2

)
.

Proof Sketch. To characterize the strategy profiles in the
support NE(UCB-S), we are going to rely on the best re-
sponse property of the Nash equilibrium. More precisely, for
any s ∈ supp(σ) with σ ∈ NE(UCB-S), arm i’s strategy
si must be a best response to σ−i, i.e., for all s′i ∈ [0, 1]:

vi(UCB-S, si, σ−i) ≥ vi(UCB-S, s′i, σ−i).
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Recall that arm i’s utility can be written as
vi(UCB-S, si, σ−i) = E(si,σ−i)[nT (i)]si. First, we
show that si ≥ s∗(µi) based on fundamental properties of
UCB-S and the click-bandit model. We then proceed by
establishing upper and lower bounds on E(si,σ−i)[nT (i)]
under UCB-S. To this end, let τi be the first round that arm
i is not in the active set At anymore and τ be the first round
that At is empty (and by convention τi = T and τ = T if
i ∈ AT and AT ̸= ∅, respectively):

τi := min{t ∈ [T ] : i ̸∈ At}, τ := min{t ∈ [T ] : At = ∅}.

We then split E(si,σ−i)[nT (i)] into the rounds before τi
and after τ . Note that arm i is never played in the rounds
between τi and τ , since it has been eliminated from At, but
other arms are still active. However, after round τ arm i is
played with probability 1/K by UCB-S.

E(si,σ−i)[nT (i)] = E(si,σ−i)[nτi(i)] + E(si,σ−i)

[
T − τ

K

]
.

From the screening rule, we obtain the upper bound

E(si,σ−i)[nτi(i)] ≤ O
( H2 log(T )

si(si − s∗(µi))2
)
.

Moreover, from the fact that si must be best response to
σ−i we then also find that E(si,σ−i)

[
T−τ
K

]
= O

(
1
K

)
. Con-

versely, the UCB-type selection rule implies a lower bound

E(si,σ−i)[nT (i)] ≥ Ω
(
min{ log(T )

si∆2
i

, s∗(µi)
T

K
}
)
.

As a result, when comparing the upper and lower bound on
E(si,σ−i)[nT (i)], any si ∈ supp(σi) must satisfy

Ω

(
min

{
log(T )

si∆2
i

, s∗(µi)
T

K

})
≤ O

(
H2 log(T )

si(si − s∗(µi))2

)
.

Rearranging terms then yields the claimed result, where we
use that si ≥ s∗(µi) as established earlier.

5.2. Upper Bound on Strong Strategic Regret of UCB-S

With the Nash equilibrium characterization from Theo-
rem 5.2 at our disposal, we are ready to prove a regret upper
bound for UCB-S. We show that the strong strategic regret
of the UCB-S mechanism is upper bounded by Õ

(√
KT

)
,

that is, for any σ ∈ NE(UCB-S) the bound holds.
Theorem 5.3. Let ∆i := µ∗ − µi and let L and H denote
the Lipschitz constants of u(s, µ) and s∗(µ), respectively.
The strong strategic regret of UCB-S is bounded as

R+
T (UCB-S)

= O

(
LH

s∗(µ∗)

√
KT log(T ) +

LH

s∗(µi)

∑
i:∆i>0

log(T )

∆i

)
.

(3)

In other words, the above regret bound is achieved under
any Nash equilibrium σ ∈ NE(UCB-S).

Proof Sketch. As suggested by the regret bound there are
two sources of regret. Broadly speaking, the first term on
the right hand side of (3) corresponds to the regret UCB-S
suffers due to arms with maximal post-click rewards (i.e.,
∆i = 0) deviating from the utility-maximizing strategy
s∗(µ∗). For such arms Theorem 5.2 bounded the deviation
by a term of order

√
K/T , thereby leading to the claimed√

KT bound. The second term in (3) corresponds to the
regret suffered from playing arms with suboptimal post-click
rewards, i.e., ∆i > 0. Using a standard UCB argument, the
Lipschitzness of u(s, µ) and s∗(µ), and again Theorem 5.2
applied to |s∗(µ∗)− si| ≤ |s∗(µ∗)− s∗(µi)|+O(H∆i) ≤
H∆i +O(H∆i) yields the claimed upper bound.

Similarly, to classical multi-armed bandits we can state a
regret bound independent of the instance-dependent quan-
tities ∆i and translate Theorem 5.3 into a minimax-type
guarantee.
Corollary 5.4. The strong strategic regret of UCB-S is
bounded as

R+
T (UCB-S) = O

∑
i∈[K]

LH

s∗(µi)

√
KT log(T )

 .

Letting smin := mini∈[K] s
∗(µi), this bound can be further

refined to

R+
T (UCB-S) = O

(
LH

smin

√
KT log(T )

)
.

In other words, the above regret bounds are achieved under
any Nash equilibrium σ ∈ NE(UCB-S).

In Corollary 5.4 we see that there remains a dependence
on the learner’s utility function u and post-click rewards
µi in the form of s∗(µi). The intuition for this can be
explained as follows: Suppose that s∗(µ) is very small.
Now, UCB-S incentivizes arms to choose strategies close to
s∗(µi), which in turn makes learning about the post-click
rewards more difficult. Hence, the incentivized strategies,
while maximizing u, make learning about the arms’ rewards
harder. However, we want to stress that the utility function
u is chosen at the discretion of the learner and a reasonable
choice of u would, for instance, ensure that the incentivized
click-rate is always at least s∗(µ) ≥ 0.1 for all µ.

5.3. Lower Bound on Weak Strategic Regret

Complementing our regret analysis, we now show a lower
bound for weak strategic regret in the strategic click-bandit.
By definition, weak strategic regret lower bounds its strong
counterpart so that the shown regret lower bound directly
applies to strong strategic regret as well.
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Theorem 5.5. Let M be any mechanism with NE(M) ̸= ∅.
There exists a utility function u satisfying (A1)-(A3) and post-
click rewards µ1, . . . , µK such that for all σ ∈ NE(M):

RT (M,σ) = Ω
(√

KT
)
.

In other words, R−
T (M) = Ω

(√
KT

)
.

Proof Sketch. Consider the utility function u(s, µ). Intu-
itively, for any low regret mechanism M the Nash equi-
librium for the arms will be in (s1, . . . , sK) = (1, . . . , 1)
as these strategies maximize the learner’s utility u and
are to the advantage of the arms. In this case, the learn-
ing problem reduces to a classical multi-armed bandit and
we inherit the well-known minimax

√
KT lower bound.

However, it is not directly clear that there exists no better
mechanism that would, for instance, incentivize arm strate-
gies (s1, . . . , si∗ , . . . , sK) = (0, . . . , 1, . . . , 0) under which
i∗ = argmaxi µi may become easier to distinguish from
i ̸= i∗. For this reason, we argue via the arms’ utilities and
lower bound the minimal utility a suboptimal arm must re-
ceive under any Nash equilibrium. Since this lower bounds
the number of times we play a suboptimal arm, we recover
the claimed lower bound.

6. Discussion
We study the strategic click-bandit problem in which each
arm is associated with a click-rate, chosen strategically by
the arms, and a more sparsely observed and immutable post-
click reward. We show the necessity of incentive design in
this model and design an incentive-aware online learning
algorithm that incentivizes desirable arm strategies under
uncertainty. As the learner has no prior knowledge of the
arm strategies and the post-click rewards, the mechanism
design is approximate and leaves room for arms to exploit
the learner’s uncertainty. This leads to an interesting re-
gret bound which makes the intuition precise that arms can
exploit the learner’s uncertainty about their strategies.

A natural extension to the studied setting would be to as-
sume that CTRs are user-dependent or more generally depen-
dent on contextual information. Another direction would
be to consider multi-slot recommendations in which the
learner selects a subset of arms every round and the selected
arms compete for the click (and our observations are hence
preference-based). In fact, the case where the learner selects
a set of arms and each arm i is clicked with probability si
independently of the other arms can be handled with exactly
the same methods as presented in this paper. In the current
setup, it would also be appealing to construct online learning
mechanisms under which there exists a Nash equilibrium
in dominant strategies with similarly benign properties as
shown in this paper.
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